Here ,
int(x^2-1)/sqrt(x^2+9)dx=int(x^2+9-10)/sqrt(x^2+9)dx∫x2−1√x2+9dx=∫x2+9−10√x2+9dx
int(x^2-1)/sqrt(x^2+9)dx=intsqrt(x^2+9)dx-10int1/sqrt(x^2+9)dx∫x2−1√x2+9dx=∫√x2+9dx−10∫1√x2+9dx
int(x^2-1)/sqrt(x^2+9)dx=I-10ln|x+sqrt(x^2+9)|color(red)(...to(A)
Now, I=intsqrt(x^2+9)dx
:.I=intsqrt(x^2+9)*1dx
Using Integration by parts:
I=sqrt(x^2+9)int1dx-int(1/(2sqrt(x^2+9))(2x)int1dx)dx
I=sqrt(x^2+9)*x-intx/sqrt(x^2+9)xdx
=xsqrt(x^2+9)-intx^2/sqrt(x^2+9)dx
=xsqrt(x^2+9)-int(x^2+9-9)/sqrt(x^2+9)dx
I=xsqrt(x^2+9)-intsqrt(x^2+9)dx+int9/sqrt(x^2+9)dx
I=xsqrt(x^2+9)-I+9ln|x+sqrt(x^2+9)|+c
2I=xsqrt(x^2+9)+9ln|x+sqrt(x^2+9)|+c
I=x/2sqrt(x^2+9)+9/2ln|x+sqrt(x^2+9)|+c/2
From eqn color(red)((A) we have
int(x^2-1)/sqrt(x^2+9)dx=x/2sqrt(x^2+9)+9/2ln|x+sqrt(x^2+9)|
color(white)(............................................)-10ln|x+sqrt(x^2+9)|+c/2
int(x^2-1)/sqrt(x^2+9)dx=x/2sqrt(x^2+9)-11/2ln|x+sqrt(x^2+9)|+C