Here ,
#int(x^2-1)/sqrt(x^2+9)dx=int(x^2+9-10)/sqrt(x^2+9)dx#
#int(x^2-1)/sqrt(x^2+9)dx=intsqrt(x^2+9)dx-10int1/sqrt(x^2+9)dx#
#int(x^2-1)/sqrt(x^2+9)dx=I-10ln|x+sqrt(x^2+9)|color(red)(...to(A)#
Now, #I=intsqrt(x^2+9)dx#
#:.I=intsqrt(x^2+9)*1dx#
Using Integration by parts:
#I=sqrt(x^2+9)int1dx-int(1/(2sqrt(x^2+9))(2x)int1dx)dx#
#I=sqrt(x^2+9)*x-intx/sqrt(x^2+9)xdx#
#=xsqrt(x^2+9)-intx^2/sqrt(x^2+9)dx#
#=xsqrt(x^2+9)-int(x^2+9-9)/sqrt(x^2+9)dx#
#I=xsqrt(x^2+9)-intsqrt(x^2+9)dx+int9/sqrt(x^2+9)dx#
#I=xsqrt(x^2+9)-I+9ln|x+sqrt(x^2+9)|+c#
#2I=xsqrt(x^2+9)+9ln|x+sqrt(x^2+9)|+c#
#I=x/2sqrt(x^2+9)+9/2ln|x+sqrt(x^2+9)|+c/2#
From eqn #color(red)((A)# we have
#int(x^2-1)/sqrt(x^2+9)dx=x/2sqrt(x^2+9)+9/2ln|x+sqrt(x^2+9)|#
#color(white)(............................................)-10ln|x+sqrt(x^2+9)|+c/2#
#int(x^2-1)/sqrt(x^2+9)dx=x/2sqrt(x^2+9)-11/2ln|x+sqrt(x^2+9)|+C#