How do you integrate int (6x^3)/sqrt(9+x^2) dx using trigonometric substitution?

2 Answers
Jun 8, 2018

2(x^2-18)sqrt(x^2+9)+C.

Explanation:

Suppose that, I=int(6x^3)/sqrt(9+x^2)dx=int(6x^3)/sqrt(x^2+3^2)dx.

We subst. x=3tanu. :. dx=3sec^2udu.

:. I=int{(6*27tan^3u)(3sec^2u)}/sqrt(9tan^2u+9)du,

=162int(tan^3usecu),

162int(tan^2u*tanusecu)du.

=162int(sec^2u-1)secutanudu.

If we take secu=v," then, "secutanudu=dv.

:. I=162int(v^2-1)dv,

=162(v^3/3-v),

=162/3v(v^2-3),

=54secu(sec^2u-3)............[because, v=secu],

=54sqrt(tan^2u+1){(tan^2u+1)-3},

=54{sqrt((x/3)^2+1)}{(x/3)^2-2},

rArr I=2(x^2-18)sqrt(x^2+9)+C, as desired!

Feel the Joy of Maths.!

Jun 8, 2018

Here is a 2^(nd) Method ( without using trgo. substn.) :

2(x^2-18)sqrt(x^2+9)+C

Explanation:

Let, I=int(6x^3)/sqrt(x^2+9)dx=int{(3x^2)(2xdx)}/sqrt(x^2+9).

Subst. x^2+9=t^2. :. x^2=t^2-9. :. 2xdx=2tdt.

:. I=int{3(t^2-9)(2tdt)}/sqrt(t^2),

=6int(t^2-9)dt,

=6(t^3/3-9t),

=2t(t^2-27),

=2{(x^2+9)-27}sqrt(x^2+9).

rArr I=2(x^2-18)sqrt(x^2+9)+C, as in the 1^(st) Method!