How do you find the antiderivative of int (cscx) dx(cscx)dx?

1 Answer
Nov 10, 2016

One way is by trickery.

Explanation:

int cscx dx = int cscx/1*(cscx+cotx)/(cscx+cotx) dxcscxdx=cscx1cscx+cotxcscx+cotxdx

= int (csc^2x+cscxcotx)/(cscx+cotx) dx=csc2x+cscxcotxcscx+cotxdx

Let u = cscx+cotxu=cscx+cotx, the du = -(csc^2x+cscxcotx)du=(csc2x+cscxcotx)

So our integral becomes -int (du)/u = -ln abs u +Cduu=ln|u|+C

So int cscx dx = - ln abs(cscx+cotx)cscxdx=ln|cscx+cotx|