How do you integrate #int 1/sqrt(x^2-9x-7) # using trigonometric substitution?
1 Answer
For this, you're going to have to complete the square.
#x^2 - 9x - 7#
#7 = x^2 - 9x#
#28/4 + 81/4 = x^2 - 9x + 81/4#
#109/4 = (x - 9/2)^2#
Now bring it back into the problem.
Let:
#= int 1/(sqrt(u^2 - 109/4))du#
Now it looks more like a
#u = sqrt(109)/2sectheta#
#du = sqrt(109)/2secthetatanthetad theta#
#sqrt(u^2 - 109/4) = sqrt(109/4sec^2theta - 109/4) = sqrt(109)/2tantheta#
What we now have is:
#= int 1/(cancel(sqrt(109)/2)cancel(tantheta))*cancel(sqrt(109)/2)secthetacancel(tantheta)d theta#
#= int secthetad theta#
Remember the trick to do this? See the following:
Let:
Therefore, what we have is
#tantheta = (2sqrt(u^2 - 109/4))/sqrt(109) = (2sqrt(x^2 - 9x - 7))/sqrt(109)#
#sectheta = (x - 9/2)*2/sqrt(109) = (2x - 9)/sqrt(109)#
So the answer is:
or, embedding the