How do you integrate int 1/sqrt(x^2-9x-7) using trigonometric substitution?

1 Answer
Feb 16, 2016

For this, you're going to have to complete the square.

x^2 - 9x - 7

7 = x^2 - 9x

28/4 + 81/4 = x^2 - 9x + 81/4

109/4 = (x - 9/2)^2

Now bring it back into the problem.

int 1/(sqrt((x - 9/2)^2 - 109/4))dx

Let:
u = x - 9/2
du = dx

= int 1/(sqrt(u^2 - 109/4))du

Now it looks more like a sqrt(x^2 - a^2) form. If we let a = sqrt(109)/2, then:

u = sqrt(109)/2sectheta
du = sqrt(109)/2secthetatanthetad theta
sqrt(u^2 - 109/4) = sqrt(109/4sec^2theta - 109/4) = sqrt(109)/2tantheta

What we now have is:

= int 1/(cancel(sqrt(109)/2)cancel(tantheta))*cancel(sqrt(109)/2)secthetacancel(tantheta)d theta

= int secthetad theta

Remember the trick to do this? See the following:

color(green)(intsecxdx)

= int (secx(secx+tanx))/(secx+tanx)dx

= int (sec^2x+secxtanx)/(secx+tanx)dx

Let:
u = secx+tanx
du = secxtanx+sec^2xdx

=> int 1/udu = ln|u| + C = color(blue)(ln|secx + tanx| + C)

Therefore, what we have is ln|sectheta + tantheta| for the result. Now what we can do is substitute in the proper variables.

tantheta = (2sqrt(u^2 - 109/4))/sqrt(109) = (2sqrt(x^2 - 9x - 7))/sqrt(109)
sectheta = (x - 9/2)*2/sqrt(109) = (2x - 9)/sqrt(109)

So the answer is:

= color(green)(ln|(2x - 9)/sqrt(109) + (2sqrt(x^2 - 9x - 7))/sqrt(109)| + C)

or, embedding the sqrt(109) into the C:

= ln|2x - 9 + 2sqrt(x^2 - 9x - 7)| - ln sqrt(109) + C

= color(blue)(ln|2x - 9 + 2sqrt(x^2 - 9x - 7)| + C)