How do you find the antiderivative of ∫1√1+x2dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer mason m Jun 23, 2017 ln∣∣x+√1+x2∣∣+C Explanation: I=∫1√1+x2dx Let x=tanθ. This implies that dx=sec2θdθ. I=∫1√1+tan2θsec2θdθ Since 1+tan2θ=sec2θ: I=∫secθdθ=ln|secθ+tanθ| Note that tanθ=x and secθ=√1+tan2θ=√1+x2: I=ln∣∣x+√1+x2∣∣+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 285332 views around the world You can reuse this answer Creative Commons License