How do you find the antiderivative of 11+x2dx?

1 Answer
Jun 23, 2017

lnx+1+x2+C

Explanation:

I=11+x2dx

Let x=tanθ. This implies that dx=sec2θdθ.

I=11+tan2θsec2θdθ

Since 1+tan2θ=sec2θ:

I=secθdθ=ln|secθ+tanθ|

Note that tanθ=x and secθ=1+tan2θ=1+x2:

I=lnx+1+x2+C