How do you evaluate the integral int x^3/sqrt(1-9x^2)x319x2?

4 Answers
Aug 3, 2017

-1/243*sqrt(1-9x^2)(2+9x^2)+C.124319x2(2+9x2)+C.

Explanation:

Let, I=intx^3/sqrt(1-9x^2)dx.I=x319x2dx.

We substitute t^2=1-9x^2 rArr 9x^2=1-t^2.t2=19x29x2=1t2.

:. x^2=1/9(1-t^2), and, 2xdx=1/9(-2t)dt,

" or, xdx=-1/9tdt.

:. I=int(x^2*xdx)/sqrt(1-9x^2),

=int1/9(1-t^2)*(-1/9)t*1/t*dt,

=1/81int(t^2-1)dt,

=1/81[t^3/3-t],

=1/243[t^3-3t],

=t/243[t^2-3],

=1/243*sqrt(1-9x^2)[1-9x^2-3],

rArr I= -1/243*sqrt(1-9x^2)(2+9x^2)+C.

Aug 3, 2017

int \ x^3/(sqrt(1-9x^2)) \ dx = - 1/243 (2+9x^2)sqrt(1-9x^2) + c

Explanation:

We want to evaluate:

I = int \ x^3/(sqrt(1-9x^2)) \ dx

Let u = 1-9x^2 => (du)/dx = -18x ; x^2=1/9(1-u)

Substituting into the integral we get:

I = -1/18 \ int \ x^2/(sqrt(1-9x^2)) \ (-18x) \ dx
\ \ = -1/18 \ int \ (1/9(1-u))/(sqrt(u)) \ du
\ \ = -1/162 \ int \ 1/(sqrt(u)) - sqrt(u) \ du
\ \ = -1/162 ( u^(1/2)/(1/2) - u^(3/2)/(3/2)) + c
\ \ = - 1/162 ( 2sqrt(u) - 2/3usqrt(u) ) + c
\ \ = - 1/162 ( 2/3(3-u)sqrt(u) ) + c
\ \ = - 1/243 (3-u)sqrt(u) + c

And, if we restore the substitution we get:

I = - 1/243 (3-1+9x^2)sqrt(1-9x^2) + c
\ \ = - 1/243 (2+9x^2)sqrt(1-9x^2) + c

Aug 3, 2017

int \ x^3/(sqrt(1-9x^2)) \ dx = -1/243 (2+9x^2)sqrt(1-9x^2) + c

Explanation:

Alternatively, using a trigonometric substitution:

We want to evaluate:

I = int \ x^3/(sqrt(1-9x^2)) \ dx

Let sin theta = 3x => cos theta (d theta)/dx =3 ; \ \x=1/3sin theta

Substituting into the integral we get:

I = int \ (1/3 sin theta)^3/(sqrt(1-sin^2 theta)) \ (cos theta/3) \ d theta

\ \ = 1/81 int \ (sin^3 theta cos theta)/(sqrt(cos^2 theta)) \ d theta

\ \ = 1/81 int \ sin^3 theta \ d theta

\ \ = 1/81 (1/3cos^3 theta -cos theta ) + c

\ \ = -1/243 (3-cos^2 theta)costheta + c

Using the identity sin^2 theta + cos^2 theta -= 1 => cos^2 theta = 1-9x^2

And, if we restore the substitution, using the above relationship, we get:

I = -1/243 (3-1+9x^2)sqrt(1-9x^2) + c
\ \ = -1/243 (2+9x^2)sqrt(1-9x^2) + c

Aug 3, 2017

int x^3/sqrt(1-9x^2)dx =-((2+9x^2)sqrt(1-9x^2))/243+C

Explanation:

Evaluate:

int x^3/sqrt(1-9x^2)dx

Substitute:

x = 1/3 sint

as the integrand is defined only for x in (-1/3,1/3) t varies in (-pi/2,pi/2).

int x^3/sqrt(1-9x^2)dx = int ((1/3sint)^3 d(1/3sint))/sqrt(1-9(1/3sint)^2)

int x^3/sqrt(1-9x^2)dx = 1/81 int (sin^3t cost)/sqrt(1-sin^2t)dt

Now:

sqrt(1-sin^2t) = sqrt(cos^2t) = cost

as for t in (-pi/2,pi/2), cost is positive.

int x^3/sqrt(1-9x^2)dx = 1/81 int (sin^3t cost)/costdt =1/81 int sin^3tdt

int x^3/sqrt(1-9x^2)dx = 1/81 int (1-cos^2t)sintdt =1/81 int (cos^2t-1)d(cost)

int x^3/sqrt(1-9x^2)dx =(cos^3t-3cost)/243+C

To undo the substitution:

cost= sqrt(1-sin^2t) = sqrt(1-9x^2)

so:

int x^3/sqrt(1-9x^2)dx =cost(cos^2t-3)/243+C

int x^3/sqrt(1-9x^2)dx =cost(1-sin^2t-3)/243+C

int x^3/sqrt(1-9x^2)dx =-((2+9x^2)sqrt(1-9x^2))/243+C