How do I evaluate the integral: int_0^(7sqrt(3/2))dx / sqrt(49-x^2)7320dx49x2?

1 Answer
Jan 27, 2015

First, recall the antiderivative formula:
int dx/sqrt(a^2-u^2) = arcsin(u/a) + Cdxa2u2=arcsin(ua)+C

Thus, int dx/sqrt(49-x^2) = int dx/sqrt(7^2-x^2)dx49x2=dx72x2

We have int dx/sqrt(7^2-x^2) = arcsin(x/7) + Cdx72x2=arcsin(x7)+C

Substitute in the constraints we

int_0^(7sqrt(3/2)) dx/sqrt(7^2-x^2) = arcsin((7sqrt(3/2))/7) - arcsin(0) = arcsin((7sqrt(3/2))/7) 7320dx72x2=arcsin⎜ ⎜7327⎟ ⎟arcsin(0)=arcsin⎜ ⎜7327⎟ ⎟

Please find the formula sheet below for reference:
www.eeweb.com