How do you find the integral of int 1/(xsqrt(x^4-4)?

1 Answer
Jun 23, 2017

intdx/(xsqrt(x^4-4))=1/4sec^-1(x^2/2)+C

Explanation:

I=intdx/(xsqrt(x^4-4))

Try the substitution x^2=2sectheta. This implies that 2xdx=2secthetatanthetad theta.

It also implies that sqrt(x^4-4)=sqrt(4sec^2theta-4)=2sqrt(sec^2theta-1)=2tantheta. Then:

I=1/2int(2xdx)/(x^2sqrt(x^4-4))

I=1/2int(2secthetatanthetad theta)/(2sectheta(2tantheta))

I=1/4intd theta

I=1/4theta

From x^2=2sectheta we see that theta=sec^-1(x^2/2):

I=1/4sec^-1(x^2/2)+C