How do you find the integral of int 1/(xsqrt(x^4-4)?
1 Answer
Jun 23, 2017
Explanation:
I=intdx/(xsqrt(x^4-4))
Try the substitution
It also implies that
I=1/2int(2xdx)/(x^2sqrt(x^4-4))
I=1/2int(2secthetatanthetad theta)/(2sectheta(2tantheta))
I=1/4intd theta
I=1/4theta
From
I=1/4sec^-1(x^2/2)+C