How do you find the integral of x2√4x−x2dx?
1 Answer
Mar 8, 2018
Use the substitution
Explanation:
Let
Complete the square in the square root:
I=∫x2√4−(x−2)2dx
Apply the substitution
I=∫(2sinθ+2)2dθ
Rearrange:
I=∫(4sin2θ+8sinθ+4)dθ
Apply the identity
I=∫(6+8sinθ−2cos2θ)dθ
Integrate term by term:
I=6θ−8cosθ−sin2θ+C
Apply the identity
I=6θ−8cosθ−2sinθcosθ+C
Reverse the substitution:
I=6sin−1(x−22)−12(x+6)√4x−x2