How do you find the integral of x24xx2dx?

1 Answer
Mar 8, 2018

Use the substitution x2=2sinθ.

Explanation:

Let I=x24xx2dx

Complete the square in the square root:

I=x24(x2)2dx

Apply the substitution x2=2sinθ:

I=(2sinθ+2)2dθ

Rearrange:

I=(4sin2θ+8sinθ+4)dθ

Apply the identity cos2θ=12sin2θ:

I=(6+8sinθ2cos2θ)dθ

Integrate term by term:

I=6θ8cosθsin2θ+C

Apply the identity sin2θ=2sinθcosθ:

I=6θ8cosθ2sinθcosθ+C

Reverse the substitution:

I=6sin1(x22)12(x+6)4xx2