How do you integrate int sqrt(x^2-1)dx using trigonometric substitution?
1 Answer
Explanation:
This is a little tough; it's just long and requires a lot of steps. Don't be intimidated. You can do it and I can help show you how.
First do a trigonometric substitution
Let
Make the substitution:
You may now proceed by using trigonometric identities.
The first integral can be solved using integration by parts:
Notice that we have our original integral back. It would seem that we are not getting anywhere. Try this trick. Set the original integral equal to what we have so far.
Get like terms together:
Divide both sides by two to solve the integral. Don't forget to add the constant of integration.
But wait, we're not done yet!
To get back to the original variable,

Recall that
That means that
Now, using the pythagorean theorem, we find
Therefore,
Taking these values and substituting them into our answer, we get: