How do you evaluate the integral int x^4/(x^2-1)dxx4x21dx?

1 Answer
Mar 4, 2018

int x^4/(x^2-1)dx =1/3x^3+x+1/2lnabs((x-1)/(x+1))+"c"x4x21dx=13x3+x+12lnx1x+1+c

Explanation:

For the integrand x^4/(x^2-1)x4x21, we perform a long division to get it into an integrable form.

x^4/(x^2-1)=(x^4-1+1)/(x^2-1)=((x^2-1)(x^2+1))/(x^2-1)+1/(x^2-1)=x4x21=x41+1x21=(x21)(x2+1)x21+1x21=

=x^2+1+1/((x+1)(x-1))=x2+1+1(x+1)(x1)

We now perform a partial fraction decomposition on the 2nd term

1/((x+1)(x-1))=((x+1)-(x-1))/(2(x+1)(x-1))=1(x+1)(x1)=(x+1)(x1)2(x+1)(x1)=

(x+1)/(2(x+1)(x-1))-(x-1)/(2(x+1)(x-1))=1/(2(x-1))-1/(2(x+1))x+12(x+1)(x1)x12(x+1)(x1)=12(x1)12(x+1)

So

x^4/(x^2-1)=x^2+1+1/(2(x-1))-1/(2(x+1))x4x21=x2+1+12(x1)12(x+1)

and we can now integrate:

intx^4/(x^2-1)dx=intx^2+1+1/(2(x-1))-1/(2(x+1))dxx4x21dx=x2+1+12(x1)12(x+1)dx

=1/3x^3+x+1/2lnabs(x-1)-1/2lnabs(x+1)+"c"=13x3+x+12ln|x1|12ln|x+1|+c

=1/3x^3+x+1/2lnabs((x-1)/(x+1))+"c"=13x3+x+12lnx1x+1+c