What is the integral of dx/(x-2x^2)^(1/2)?

1 Answer
Jun 16, 2015

Let's see if this can be rewritten.

= int 1/sqrt(-2x^2 + x)dx

= int 1/sqrt(-2*(x^2 - x/2))dx

Completing the Square:
= int 1/sqrt(-2*(x^2 - x/2 + 1/16 - 1/16))dx

= int 1/sqrt(-2*(x-1/4)^2 + 1/8)dx

u-substitution:
Now, let:
u = x-1/4
du = dx

= int 1/sqrt(1/8-2u^2)du

= int 1/sqrt(1/8(1-16u^2))du

= int 1/(sqrt(1/8)sqrt(1-16u^2))du

= int 1/(sqrt(2)sqrt(1/16-u^2))du

= 1/sqrt2int 1/(sqrt(1/16-u^2))du

Now that it looks better...

Trig substitution:
Let:
u = asintheta with a = 1/4,
with the form sqrt(a^2 - x^2) resembling sqrt(1-sin^2theta).
du = 1/4costhetad theta
sqrt(1/16 - u^2) = sqrt(1/4^2 - 1/4^2sin^2theta) = 1/4costheta

We get:

1/sqrt2int1/(cancel(1/4)cancel(costheta))1/cancel(4)cancel(costheta)d theta = theta/sqrt2 + C

= arcsin(4u)/sqrt2 + C

but u = x - 1/4, so 4u = 4x - 1:

=> arcsin(4x - 1)/sqrt2 + C

for x in (0, 1/2)

Since Wolfram Alpha does not give the same answer , I decided to check by taking the derivative of the integration result.

...or:

d/(dx)[arcsin(4x - 1)/sqrt2 + C] = 1/sqrt2 * 1/(sqrt(1-(4x - 1)^2))*4

= 4/sqrt2*1/(sqrt(1-16x^2 + 8x - 1))

=(sqrt2)^3/(sqrt(-16x^2 + 8x)) = (sqrt8)/(sqrt(-16x^2 + 8x))

= (sqrt8)/(sqrt(-16x^2 + 8x))*(1/sqrt8)/(1/sqrt8)

= 1/(1/sqrt8sqrt(-16x^2 + 8x))

= 1/(sqrt(-(16/8)x^2 + (8/8)x))

= 1/(sqrt(-2x^2 + x)) = 1/(sqrt(x-2x^2)

again, for x in (0, 1/2)