How do you evaluate the integral int (x+2)/(x^2-2x-3)?

1 Answer
Feb 1, 2017

The answer is =-1/4ln(|x+1|)+5/4ln(|x-3|)+C

Explanation:

Let's factorise the denominator

x^2-2x-3=(x+1)(x-3)

Let's perform the decomposition into partial fractions

(x+2)/((x+1)(x-3))=A/(x+1)+B/(x-3)

=(A(x-3)+B(x+1))/((x+1)(x-3))

The denominators are the same, we can equalize the numerators

(x+2)=A(x-3)+B(x+1)

Let x=-1, =>, 1=-4A, =>, A=-1/4

Let x=3, =>, 5=4B, B=5/4

Therefore,

(x+2)/((x+1)(x-3))=(-1/4)/(x+1)+(5/4)/(x-3)

int((x+2)dx)/((x+1)(x-3))=-1/4intdx/(x+1)+5/4intdx/(x-3)

=-1/4ln(|x+1|)+5/4ln(|x-3|)+C