How do you integrate 2/sqrt(x^2-4)?

1 Answer
May 26, 2018

The answer is =2ln(|(x/2)+sqrt(x^2-4)/2|)+C

Explanation:

Perform the substitution

x=2secu, =>, dx=2secutanudu

sqrt(x^2-4)=sqrt(4sec^2u-4)=2tanu

The integral is

I=int(2dx)/sqrt(x^2-4)=2int(2secutanudu)/(2tanu)

=2intsecudu

=2int(secu(secu+tanu)du)/(secu+tanu)

Let v=secu+tanu

=>, dv=(secutanu+sec^2u)du

Therefore,

The integral is

I=2int(dv)/(v)

=2lnv

=2ln(secu+tanu)

=2ln(|(x/2)+sqrt(x^2-4)/2|)+C