How do you integrate int 1/sqrt(7-3x^2) by trigonometric substitution?

1 Answer
Oct 30, 2016

int1/sqrt(7 - 3x^2)dx = (sqrt(3)/3)sin^-1(sqrt(3/7)x) + C

Explanation:

Given:

int1/sqrt(7 - 3x^2)dx

Divide by sqrt(3) so that the integrand is in the form 1/sqrt(a^2 - x^2)

1/sqrt(3)int1/sqrt(7/3 - x^2)dx

Please notice that a^2 = 7/3, therefore, a = sqrt(7/3)

The reference for Trignometric substitutions says to substitute x = asin(t)

let x = sqrt(7/3)sin(t), then dx = sqrt(7/3)cos(t)dt

1/sqrt(3)int(sqrt(7/3)cos(t))/sqrt(7/3 - 7/3sin^2(t))dt

From the same reference, it says to substitute a^2cos^2(t) for a^2 - a^2sin^2(t):

1/sqrt(3)int(sqrt(7/3)cos(t))/sqrt(7/3cos^2(t))dt =

1/sqrt(3)int(sqrt(7/3)cos(t))/(sqrt(7/3)cos(t))dt =

1/sqrt(3)intdt = (sqrt(3)(t))/3 + C

Solve the original substitution for t:

x = sqrt(7/3)sin(t)

sin(t) = sqrt(3/7)x

t = sin^-1(sqrt(3/7)x)

Substitute sin^-1(sqrt(3/7)x) for t

int1/sqrt(7 - 3x^2)dx = (sqrt(3)(sin^-1(sqrt(3/7)x)))/3 + C