Given:
int1/sqrt(7 - 3x^2)dx
Divide by sqrt(3) so that the integrand is in the form 1/sqrt(a^2 - x^2)
1/sqrt(3)int1/sqrt(7/3 - x^2)dx
Please notice that a^2 = 7/3, therefore, a = sqrt(7/3)
The reference for Trignometric substitutions says to substitute x = asin(t)
let x = sqrt(7/3)sin(t), then dx = sqrt(7/3)cos(t)dt
1/sqrt(3)int(sqrt(7/3)cos(t))/sqrt(7/3 - 7/3sin^2(t))dt
From the same reference, it says to substitute a^2cos^2(t) for a^2 - a^2sin^2(t):
1/sqrt(3)int(sqrt(7/3)cos(t))/sqrt(7/3cos^2(t))dt =
1/sqrt(3)int(sqrt(7/3)cos(t))/(sqrt(7/3)cos(t))dt =
1/sqrt(3)intdt = (sqrt(3)(t))/3 + C
Solve the original substitution for t:
x = sqrt(7/3)sin(t)
sin(t) = sqrt(3/7)x
t = sin^-1(sqrt(3/7)x)
Substitute sin^-1(sqrt(3/7)x) for t
int1/sqrt(7 - 3x^2)dx = (sqrt(3)(sin^-1(sqrt(3/7)x)))/3 + C