How do you integrate ∫x√144+x2dx using trigonometric substitution?
1 Answer
Refer below for explanation.
Explanation:
Step 1: Draw It!
The first thing to do with trig substitution problems, especially if you have time, is to draw them out. Note that the expression in the denominator -
Step 2: Define a Few Things
From the image, we see that
Step 3: Trigonometric Substitution
Now we can finally take this information and apply it to the problem. Making substitutions, our integral becomes:
Step 4: Simplification
This tends to be pretty long, so bear with me here.
Remember the Pythagorean Identities from trig? One of those identities is
Hm...think about it for a moment. What function's derivative is
You might think we're done, but wait a minute. The problem was given to us in terms of
Step 5: Reverse Substitution
Wonder why I told you to draw the problem? Because now we can clearly see from the triangle above that
Final answer: