How do you integrate int sec^6(4x)tan(4x)∫sec6(4x)tan(4x)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer A. S. Adikesavan Dec 8, 2016 sec^6(4x)/24+Csec6(4x)24+C Explanation: Use dsecx = sec x tan x dx. int sec^6(4x)tan(4x) dx∫sec6(4x)tan(4x)dx =1/4 int sec^5(4x)dsec(4x)=14∫sec5(4x)dsec(4x) =sec^6(4x)/24+C=sec6(4x)24+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx∫1x2⋅√x2−9dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx∫x3√x2+9dx ? How do you find the integral intx^3*sqrt(9-x^2)dx∫x3⋅√9−x2dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx∫x3√16−x2dx ? How do you find the integral intsqrt(x^2-1)/xdx∫√x2−1xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx∫√x2−9x3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx∫x√x2+x+1dx ? How do you find the integral intdt/(sqrt(t^2-6t+13))∫dt√t2−6t+13 ? How do you find the integral intx*sqrt(1-x^4)dx∫x⋅√1−x4dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6088 views around the world You can reuse this answer Creative Commons License