How do you integrate int x^2 / sqrt(16+x^2) dx using trigonometric substitution?

1 Answer
Mar 15, 2018

I = 1/2xsqrt(x^2 + 16) - ln|(x + sqrt(x^2 + 16))/2| + C

Explanation:

Since the square root in the denominator is of the form sqrt(a^2 + x^2), we will use the substitution x = atantheta = 4tantheta.

Therefore, dx =4sec^2theta d theta.

I = int (4tantheta)^2/sqrt(16 + (4tantheta)^2) 4sec^2theta d theta

I = int (16tan^2theta)/sqrt(16(1 + tan^2theta)) 4sec^2theta d theta

I = int(16tan^2theta)/sqrt(16sec^2theta) 4sec^2theta

I = int(16tan^2theta)/(4sectheta) * 4sec^2theta

I = int16tan^2thetasectheta

I = int16(sec^2theta - 1)sectheta

I = 16int sec^3theta - sectheta

These are two known integrals.

I = 8secthetatantheta - 8ln|tantheta + sectheta| + C

Now recall that x/4 = tantheta, therefore sectheta = sqrt(x^2 + 16)/4.

I = 1/2xsqrt(x^2 + 16) - 8ln|(x + sqrt(x^2 + 16))/2| + C

Hopefully this helps!