How do you evaluate the integral int (xdx)/(x^2+4x+5)?

1 Answer
Feb 11, 2017

int \ x/(x^2+4x+5) \ dx = 1/2ln | x^2+4x+5 | - 2tan^-1 (x+2) + C

Explanation:

Let

I = int \ x/(x^2+4x+5) \ dx

We can complete the square on the denominator, to get

I = int \ x/((x+2)^2-2^2+5) \ dx
\ \ = int \ x/((x+2)^2+1) \ dx

Let u=x+2 iff x = u-2 => (dx)/(du) = 1 , so then substituting into the integral we get:

I = int \ (u-2)/(u^2+1) \ du
\ \ = int \ u/(u^2+1) \ - 2/(u^2+1) \ du
\ \ = int \ u/(u^2+1) \ du \ - 2int 1 /(u^2+1) \ du
\ \ = 1/2int \ (2u)/(u^2+1) \ du \ - 2int 1 /(u^2+1) \ du

The first intergral is of the form int \ (f'(u))/(f(u)) \ du which is a standard result with solution ln | f(u) | , And so:

int \ (2u)/(u^2+1) \ du = ln | u^2+1 |
" "= ln | (x+2)^2+1 |
" "= ln | x^2+4x+5 |

For the second integral, we can use the substitution x=tan theta

u = tan theta => (du)/(d theta) = sec^2 theta , and, theta = tan^-1u
u = tan theta iff u^2=tan^2 theta
" " => 1+u^2=1+tan^2 theta
" " => 1+u^2=sec^2 theta

Substituting into the integral we get:

int 1 /(u^2+1) \ du = int \ d theta
" "= theta
" "= tan^-1u
" "= tan^-1 (x+2)

Combining the result from both result we get:

I = 1/2ln | x^2+4x+5 | - 2tan^-1 (x+2) + C