How do you evaluate the integral int (xdx)/(x^2+4x+5)?
1 Answer
Explanation:
Let
I = int \ x/(x^2+4x+5) \ dx
We can complete the square on the denominator, to get
I = int \ x/((x+2)^2-2^2+5) \ dx
\ \ = int \ x/((x+2)^2+1) \ dx
Let
I = int \ (u-2)/(u^2+1) \ du
\ \ = int \ u/(u^2+1) \ - 2/(u^2+1) \ du
\ \ = int \ u/(u^2+1) \ du \ - 2int 1 /(u^2+1) \ du
\ \ = 1/2int \ (2u)/(u^2+1) \ du \ - 2int 1 /(u^2+1) \ du
The first intergral is of the form
int \ (2u)/(u^2+1) \ du = ln | u^2+1 |
" "= ln | (x+2)^2+1 |
" "= ln | x^2+4x+5 |
For the second integral, we can use the substitution
u = tan theta => (du)/(d theta) = sec^2 theta , and,theta = tan^-1u
u = tan theta iff u^2=tan^2 theta
" " => 1+u^2=1+tan^2 theta
" " => 1+u^2=sec^2 theta
Substituting into the integral we get:
int 1 /(u^2+1) \ du = int \ d theta
" "= theta
" "= tan^-1u
" "= tan^-1 (x+2)
Combining the result from both result we get:
I = 1/2ln | x^2+4x+5 | - 2tan^-1 (x+2) + C