How do you find the integral of e^(2x) sqrt(1 + e^(2x)) dxe2x1+e2xdx?

1 Answer
Jun 9, 2015

1/3 (1+e^(2x))^(3/2)13(1+e2x)32 +C

Explanation:

Let u= 1+e^(2x)1+e2x, du= 2e^(2x)e2xdx

Accordingly, int e^(2x) sqrt(1+e^(2x) dxe2x1+e2xdx= 1/2int u^(1/2) du12u12du

=1/3 u^(3/2)13u32 +C

=1/3 (1+e^(2x))^(3/2)13(1+e2x)32 +C