How do you find the integral of e^(2x) sqrt(1 + e^(2x)) dxe2x√1+e2xdx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer bp Jun 9, 2015 1/3 (1+e^(2x))^(3/2)13(1+e2x)32 +C Explanation: Let u= 1+e^(2x)1+e2x, du= 2e^(2x)e2xdx Accordingly, int e^(2x) sqrt(1+e^(2x) dx∫e2x√1+e2xdx= 1/2int u^(1/2) du12∫u12du =1/3 u^(3/2)13u32 +C =1/3 (1+e^(2x))^(3/2)13(1+e2x)32 +C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx∫1x2⋅√x2−9dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx∫x3√x2+9dx ? How do you find the integral intx^3*sqrt(9-x^2)dx∫x3⋅√9−x2dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx∫x3√16−x2dx ? How do you find the integral intsqrt(x^2-1)/xdx∫√x2−1xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx∫√x2−9x3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx∫x√x2+x+1dx ? How do you find the integral intdt/(sqrt(t^2-6t+13))∫dt√t2−6t+13 ? How do you find the integral intx*sqrt(1-x^4)dx∫x⋅√1−x4dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 5204 views around the world You can reuse this answer Creative Commons License