How do you find the integral of int (x-2)/(x^2+1)x2x2+1?

1 Answer
Feb 5, 2017

=1/2ln(x^2+1)-(2tan^(-1)x)+C=12ln(x2+1)(2tan1x)+C

Explanation:

We can rewrite the integral as two fractions and then integrate teh em separately.

int((x-2)/(x^2+1))dx=color(red)(intx/(x^2+1)dx)-color(blue)(int2/(x^2+1)dx(x2x2+1)dx=xx2+1dx2x2+1dx

First integral

color(red)(intx/(x^2-2)dx)xx22dx

using int(f'(x))/f(x)dx=ln|f(x)|

d/(dx)(x^2+1)=2x

:.color(red)(intx/(x^2-2)dx=1/2ln|x^2+1|)

since x^2+1>0AA in RR " we can omit the modulus sign"

second integral

color(blue)(int2/(x^2+1)dx

we integrate by substitution

x=tanu=>dx=sec^2udu

color(blue)(int2/(x^2+1)dx=2int1/(tan^2u+1)sec^2udu

=color(blue)(2(int1/cancel(sec^2u)cancel(sec^2u)du)=2intdu

color(blue)(=2u=2tan^(-1)x)

putting the two results together we have:

int((x-2)/(x^2+1))dx=color(red)(intx/(x^2+1)dx)-color(blue)(int2/(x^2+1)dx

=color(red)(1/2ln(x^2+1))-color(blue)(2tan^(-1)x)+C