How do you integrate #sin^2xcosx dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer GiĆ³ Feb 4, 2015 I would use the fact that: #d(sin(x))=cos(x)dx# and substituting: #intsin^2(x)*d(sin(x))=# Now I use #sin(x)# as my variable of integration and integrate it (as if it was a simple #x#). #intsin^2(x)*d(sin(x))=sin^3(x)/3+c# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 2914 views around the world You can reuse this answer Creative Commons License