How do you integrate int (e^x-1)/sqrt(e^(2x) -16)dx using trigonometric substitution?

2 Answers
Jul 26, 2018

-i(arcsin(e^x/4)+1/4ln(|(4+sqrt(16-e^(2x)))/e^x|))+c

Explanation:

e^x=4sinΘ
x=ln(4sinΘ)
dx=1/(4sinΘ)*4cosΘdΘ
dx=cosΘ/sinΘdΘ

int(e^x-1)/(sqrt(e^(2x)-16)dx

int(4sinΘ-1)/(sqrt((4sinΘ)^2-16)*cosΘ/sinΘdΘ

int(4sinΘ-1)/(sqrt(16sin^2Θ-16))*cosΘ/sinΘdΘ

int(4sinΘ-1)/(sqrt(16)*sqrt(sin^2Θ-1)*cosΘ/sinΘdΘ

int(4sinΘ-1)/(4*sqrt(-cos^2Θ)*cosΘ/sinΘdΘ

1/iint(4sinΘ-1)/(4cosΘ*cosΘ/sinΘdΘ

-iint(4sinΘ-1)/(4sinΘ)dΘ

-iint((4sinΘ)/(4sinΘ)-(1)/(4sinΘ))dΘ

-iint1dΘ+iint1/4cscΘdΘ

-iΘ + i/4ln|cscΘ+cotΘ| + c

color(red)( bar( ul( | color(white)(a/a) color(black)( -iarcsin(e^x/4)-i/4ln(|(4+sqrt(16-e^(2x)))/e^x|)+c, c in RR ) color(white)(a/a) | )))

Note 1: We set e^x as a form of sinΘ because the e^x term in the root in the denominator was positive and the constant term was negative.

Note 2: intcscΘ=-ln|cscx+cotx|+c

Note 3: You get the expression for Θ from rewriting the original equation, and you can solve for cscΘ and cotΘ using a right triangle.

Note 4: There are probably ways to simplify my final answer, but I just kept it like that.

Aug 6, 2018

I=int(e^x-1)/sqrt(e^(2x)-16)dx
Let X=e^x

x=ln(X)

dx=(dX)/X

So:

I=int(X-1)/(Xsqrt(X^2-16))dX

=int(cancel(X))/(cancel(X)sqrt(X^2-16))dX-int1/(Xsqrt(X^2-16))dX

Now let X=4sec(theta)

dX=4sec(theta)tan(theta)d theta

So :

I=int(4sec(theta)tan(theta))/sqrt((4sec(theta))^2-16)d theta-int(cancel(4sec(theta))tan(theta))/(cancel(4sec(theta))sqrt((4sec(theta))^2-16))d theta

=int(4sec(theta)tan(theta))/sqrt(16(sec(theta)^2-1))d theta-int(tan(theta))/sqrt(16(sec(theta)^2-1))d theta

Because sec(theta)^2-1=tan(theta)^2,

I=int(cancel(4)sec(theta)cancel(tan(theta)))/(cancel(4tan(theta)))d theta-intcancel(tan(theta))/(4cancel(tan(theta)))d theta

=intsec(theta)d theta-1/4int1d theta

Now, we have intsec(theta)d theta=ln(|sec(theta)+tan(theta)|)

[Here is a proof if you need the explanation.](https://socratic.org/questions/what-is-the-integral-of-sec-x?)

So :
I=ln(|sec(theta)+tan(theta)|)-1/4theta

Because theta=sec^(-1)(X/4)=sec^(-1)(e^x/4), and tan(sec^(-1)(u))=sqrt(u^2-1), where u is a function ([here is a proof if you need it.](https://socratic.org/questions/how-to-simplify-tan-sec-1-x)),

I=ln(|e^x/4+sqrt(e^(2x)/16-1)|)-1/4sec^(-1)(e^x/4)+C, C in RR.

\0/ Here's our answer !