How do you evaluate the integral int (x^2-x+1)/(x-1)^3?

1 Answer
Jan 12, 2017

The answer is =ln(∣x-1∣)-1/(x-1)-1/(2(x-1)^2)+C

Explanation:

We use
intx^ndx=x^(n+1)/(n+1)+C (n!=-1)

and intdx/x=lnx +C

We use the method by substitution

Let u=x-1, =>, du=dx

x=u+1

So,

x^2-x+1=(u+1)^2-(u)

=u^2+2u+1-u

=u^2+u+1

Therefore,

int((x^2-x+1)dx)/(x-1)^3

=int((u^2+u+1)du)/(u^3)

=int(1/u+1/u^2+1/u^3)du

=lnu-1/u-1/(2u^2)

=ln(∣x-1∣)-1/(x-1)-1/(2(x-1)^2)+C