How do you integrate int x^3/(sqrt(x^2-4))dx using trigonometric substitution?

1 Answer
Jun 13, 2018

The answer is =1/3(x^2-4)^(3/2)+4sqrt(x^2-4)+C

Explanation:

There is no need for trigonometric substitution.

Let u=x^2-4, =>, du=2xdx

Therefore, the integral is

I=int(x^3dx)/sqrt(x^2-4)=1/2int((u+4)du)/sqrtu

=1/2int(u^(1/2)+4u^(-1/2))du

=1/2(u^(3/2)/(3/2)+(4u^(1/2)/(1/2)))

=1/3u^(3/2)+4u^(1/2)

=1/3(x^2-4)^(3/2)+4sqrt(x^2-4)+C