How do you integrate int sqrt((x+3)^2-100)(x+3)2100 using trig substitutions?

1 Answer
Nov 2, 2016

The answer is =(x+3)/2(sqrt(((x+3)^2-100)))-50ln((sqrt(((x+3)^2)-100)+(x+3))/10)+C=x+32(((x+3)2100))50ln⎜ ⎜ ⎜ ⎜((x+3)2)100+(x+3)10⎟ ⎟ ⎟ ⎟+C

Explanation:

Let u=x+3u=x+3 then du=dxdu=dx
int(sqrt((x+3)^2-100))dx=int(sqrt(u^2-100))du((x+3)2100)dx=(u2100)du
Then let u=10secthetau=10secθ=>du=10secthetatanthetadu=10secθtanθ
int(sqrt(u^2-100))du=int(sqrt(100sec^2theta-100))10secthetatantheta(d(theta))(u2100)du=(100sec2θ100)10secθtanθ(d(θ))
=100intsecthetatan^2thetad(theta)=100secθtan2θd(θ)
=100intsectheta(sec^2theta-1)d(theta)=100secθ(sec2θ1)d(θ)
=100int(sec^3theta-sectheta)d(theta)=100(sec3θsecθ)d(θ)
intsec^3thetad(theta)=1/2intsecthetad(theta)+1/2secthetatanthetasec3θd(θ)=12secθd(θ)+12secθtanθ
and intsecthetad(theta)=ln(tantheta+sectheta)secθd(θ)=ln(tanθ+secθ)
intsec^3thetad(theta)=1/2ln(tantheta+sectheta)+1/2secthetatanthetasec3θd(θ)=12ln(tanθ+secθ)+12secθtanθ
100int(sec^3theta-sectheta)d(theta)=100(1/2secthetatantheta-1/2ln(tantheta+sectheta))100(sec3θsecθ)d(θ)=100(12secθtanθ12ln(tanθ+secθ))