How do you find the integral of sinpixcospix dxsinπxcosπxdx?

2 Answers
Feb 7, 2015

For this integral, you should recall that \sin(2x)=2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x). So, if you multiply the sine and cosine function evaluated in the same point, dividing by two the relation above, you can check that
{\sin(2x)}/{2}=\sin(x)\cos(x)sin(2x)2=sin(x)cos(x).

In your case, instead of xx you have \pi xπx, so the relations becomes
\sin(\pi x)\cos(\pi x) = {\sin(2\pi x)}/2sin(πx)cos(πx)=sin(2πx)2, which is much easier to integrate. In fact,
\int {\sin(2\pi x)}/2 = 1/2\int \sin(2\pi x)sin(2πx)2=12sin(2πx)
let tt be the new variable:
t=2\pi x \Rightarrow x=t/{2\pi} \Rightarrow dx = dt/{2\pi}t=2πxx=t2πdx=dt2π

The integral becomes
1/2\int \sin(t)dt/{2\pi}12sin(t)dt2π, and factoring out constants again we get
1/{4\pi}\int \sin(t)dt=-\cos(t)/{4\pi} +C14πsin(t)dt=cos(t)4π+C
Recalling the relation between tt and xx, the answer is finally
-\cos(2\pi x)/{4\pi} +Ccos(2πx)4π+C

Mar 10, 2015

One method gives correct answer: -\cos(2\pi x)/{4\pi} +Ccos(2πx)4π+C

A different method gives an answer that looks different:

intsin(pix)cos(pix)dxsin(πx)cos(πx)dx

Since d(sin t) =cos t dt, substitution will work:

Let u=sin(pix)u=sin(πx), then du= pi cos(pix) dxdu=πcos(πx)dx And cos(pix)=(du)/(pi)cos(πx)=duπ.

Substituting yields:

1/(pi)intsinu du=1/(pi)(sin^2u)/2+C1πsinudu=1πsin2u2+C

So
intsin(pix)cos(pix)dx=1/(2pi)sin^2(pi x)+Csin(πx)cos(πx)dx=12πsin2(πx)+C

The answer look different, but what is the difference?
Hint: subtract and simplify.

1/(2pi)sin^2(pi x)-(-\cos(2\pi x)/{4\pi})12πsin2(πx)(cos(2πx)4π)
=1/(2pi)sin^2(pi x)+1/(4 pi)cos(2 pi x)=12πsin2(πx)+14πcos(2πx)
=1/(2pi)sin^2(pi x)+1/(4 pi)[1-2sin^2( pi x)]=12πsin2(πx)+14π[12sin2(πx)]
=1/(4pi)=14π

The difference is a constant! The two solutions have different CC's.