How do you integrate 114x2 by trigonometric substitution?

1 Answer
Oct 12, 2016

114x2dx=12sin1(2x)+C

Explanation:

Let x=12sinθ

Then:

114x2dx=11sin2θd12sinθdθdθ

114x2dx=12cosθcosθdθ

114x2dx=12dθ

114x2dx=12θ+C

114x2dx=12sin1(2x)+C