How do you integrate ∫1√1−4x2 by trigonometric substitution?
1 Answer
Oct 12, 2016
Explanation:
Let
Then:
∫1√1−4x2dx=∫1√1−sin2θd12sinθdθdθ
∫1√1−4x2dx=∫12cosθcosθdθ
∫1√1−4x2dx=∫12dθ
∫1√1−4x2dx=12θ+C
∫1√1−4x2dx=12sin−1(2x)+C