Integrate intx^3/sqrt(x^2+4) using trig substitution?

1 Answer
Oct 11, 2017

See the explanatiom below

Explanation:

You have to change as follows

I=8(1/3u^3-u)

I=8/3(sec^3theta-3sectheta)

=8/3(((x^2+1)/2)^(3/2)-3sec(arctan(x/2))+C

It's easier without trigonometric substitution

Let u=x^2+4, =>, du=2xdx

I=1/2int((u-4)du)/sqrtu

=1/2intsqrtudu-int4/sqrtudu

=(u^(3/2)/3-4sqrtu)

=1/3(x^2+4)^(3/2)-4sqrt(x^2+4)

=((x^2-8))/3sqrt(x^2+4)+C