How do you integrate int sec^2x/(4-tan^2x)^(3/2)sec2x(4tan2x)32 by trigonometric substitution?

1 Answer
Sep 11, 2016

tanx/(4sqrt(4-tan^2x))+Ctanx44tan2x+C

Explanation:

We have:

I=intsec^2x/(4-tan^2x)^(3/2)dxI=sec2x(4tan2x)32dx

We will first use the non-trigonometric substitution u=tanxu=tanx, implying that du=sec^2xdxdu=sec2xdx:

I=int(du)/(4-u^2)^(3/2)I=du(4u2)32

Now we will apply the trigonometric substitution u=2sinthetau=2sinθ. Recall that this implies that du=2costhetad thetadu=2cosθdθ.

I=int(2costhetad theta)/(4-4sin^2theta)^(3/2)I=2cosθdθ(44sin2θ)32

=int(2costhetad theta)/(4^(3/2)(1-sin^2theta)^(3/2))=2cosθdθ432(1sin2θ)32

Note that 1-sin^2theta=cos^2theta1sin2θ=cos2θ:

I=int(2costhetad theta)/(8(cos^2theta)^(3/2))I=2cosθdθ8(cos2θ)32

=int(costhetad theta)/(4cos^3theta)=cosθdθ4cos3θ

=1/4int(d theta)/cos^2theta=14dθcos2θ

=1/4intsec^2thetad theta=14sec2θdθ

=1/4tantheta+C=14tanθ+C

Recall that u=2sinthetau=2sinθ, so theta=arcsin(u/2)θ=arcsin(u2).

I=1/4tan(arcsin(u/2))+CI=14tan(arcsin(u2))+C

We can simplify this: draw the triangle where sine is u/2u2, that is, the opposite side is uu and the hypotenuse is 22. Through the Pythagorean theorem, we see that the adjacent side is sqrt(4-u^2)4u2.

Thus, the tangent is opposite over adjacent, or:

I=1/4(u/sqrt(4-u^2))+CI=14(u4u2)+C

Now, since u=tanxu=tanx:

I=tanx/(4sqrt(4-tan^2x))+CI=tanx44tan2x+C