How do you integrate int sec^2x/(4-tan^2x)^(3/2)∫sec2x(4−tan2x)32 by trigonometric substitution?
1 Answer
Explanation:
We have:
I=intsec^2x/(4-tan^2x)^(3/2)dxI=∫sec2x(4−tan2x)32dx
We will first use the non-trigonometric substitution
I=int(du)/(4-u^2)^(3/2)I=∫du(4−u2)32
Now we will apply the trigonometric substitution
I=int(2costhetad theta)/(4-4sin^2theta)^(3/2)I=∫2cosθdθ(4−4sin2θ)32
=int(2costhetad theta)/(4^(3/2)(1-sin^2theta)^(3/2))=∫2cosθdθ432(1−sin2θ)32
Note that
I=int(2costhetad theta)/(8(cos^2theta)^(3/2))I=∫2cosθdθ8(cos2θ)32
=int(costhetad theta)/(4cos^3theta)=∫cosθdθ4cos3θ
=1/4int(d theta)/cos^2theta=14∫dθcos2θ
=1/4intsec^2thetad theta=14∫sec2θdθ
=1/4tantheta+C=14tanθ+C
Recall that
I=1/4tan(arcsin(u/2))+CI=14tan(arcsin(u2))+C
We can simplify this: draw the triangle where sine is
Thus, the tangent is opposite over adjacent, or:
I=1/4(u/sqrt(4-u^2))+CI=14(u√4−u2)+C
Now, since
I=tanx/(4sqrt(4-tan^2x))+CI=tanx4√4−tan2x+C