How do you evaluate the integral int xtan^2xxtan2x?

1 Answer
Mar 9, 2017

I would begin by using the identity tan^2(theta)=sec^2(theta)-1tan2(θ)=sec2(θ)1.

=>intx(sec^2(x)-1)dxx(sec2(x)1)dx

intxsec^2(x)dx-intxdxxsec2(x)dxxdx

The RH is a basic integral. Let's continue with the left. Now we will use integration by parts.

u=x color(white)(space) dv=sec^2(x)dxu=xspacedv=sec2(x)dx

du=dxcolor(white)(space)v=tan(x)du=dxspacev=tan(x)

Our integral now takes the form of uv-intvduuvvdu:

xtan(x)-inttan(x)dxxtan(x)tan(x)dx

The RH is a basic integral.

Combining this with what we found above:

xtan(x)-inttan(x)dx-intxdxxtan(x)tan(x)dxxdx

Integrating, we get:

=>xtan(x)+ln(|cos(x)|)-x^2/2+Cxtan(x)+ln(|cos(x)|)x22+C