How do you evaluate ∫arccosx√1−x2 from [0,1√2]?
1 Answer
Jan 18, 2017
Explanation:
I=∫1√20arccosx√1−x2dx
It's important to know that
Also note that the bounds will change:
x=1√2 ⇒ u=arccos(1√2)=π4
x=0 ⇒ u=arccos(0)=π2
Then:
I=−∫1√20arccosx(−1√1−x2dx)
I=−∫π4π2u.du
I=∫π2π4u.du
I=12u2∣∣∣π/2π/4
I=12((π2)2−(π4)2)
I=12(π24−π216)
I=12(4π2−π216)
I=3π232