How do you evaluate arccosx1x2 from [0,12]?

1 Answer
Jan 18, 2017

120arccosx1x2dx=3π232

Explanation:

I=120arccosx1x2dx

It's important to know that ddxarccosx=11x2. So, if we let u=arccosx then du=11x2dx.

Also note that the bounds will change:

x=12 u=arccos(12)=π4

x=0 u=arccos(0)=π2

Then:

I=120arccosx(11x2dx)

I=π4π2u.du

I=π2π4u.du

I=12u2π/2π/4

I=12((π2)2(π4)2)

I=12(π24π216)

I=12(4π2π216)

I=3π232