How do you integrate int [xsqrt(x^2 + 1)] dx ?

1 Answer
Jun 8, 2015

This is of the form:

sqrt(x^2 + a^2)

which means you can use the substitution:

x = atantheta

So, let:
x = tantheta
dx = sec^2thetad theta
sqrt(x^2+1) = sqrt(tan^2theta+1) = sqrt(sec^2theta) = sectheta

int xsqrt(x^2+1)dx = int tanthetasecthetasec^2thetad theta

= int (sec^2theta)(secthetatantheta)d theta

Notice how you can do a second substitution here, with u-substitution.

Let:
u = sectheta
du = secthetatanthetad theta

= int u^2du = u^3/3 + C

= sec^3theta/3 + C

Since sectheta = sqrt(x^2 + 1):

=> 1/3(x^2+1)^(3/2) + C