int (d x)/(sqrt (x^2+4))=?∫dx√x2+4=?
"let be "u=x/2" ; " d x=2*d u" ; "x^2=4u^2let be u=x2 ; dx=2⋅du ; x2=4u2
int (2*d u)/(sqrt(4u^2+4))=int(2*d u)/(sqrt(4(u^2+1))∫2⋅du√4u2+4=∫2⋅du√4(u2+1)
int(cancel(2)* d u)/(cancel(2)*sqrt(u^2+1))=int(d u)/(sqrt(u^2+1))
"now, substitute "u=tan v" ; "v=arc tan u
d u=sec ^2 v* d v
int (sec ^2 v*d v)/(sqrt(tan^2 v+1))" ;so "tan^2 v +1=sec ^2 v
int(sec^2 v*d v)/(sqrt(sec^2 v))=int (cancel(sec)^2 v*d v)/(cancel(sec) v)=int sec v*d v
"expand fraction by " tan v+sec v
int sec v*d v*(tan v+sec v)/(tan v+sec v)
int (sec v*tan v + sec ^2 v)/(tan v + sec v) *d v
k=tan v+ sec v
d k=(sec v* tan v+sec ^2 v) *d v
int ( d k)/k=l n k+C
"undo substitution "k=tan v +sec v
int (d x)/(sqrt (x^2+4))= l n(tan v+sec v)+C
sec v=sqrt(1+tan ^2 v)=sqrt (1+u^2)
int (d x)/(sqrt (x^2+4))=l n(u+sqrt(1+u^2))+C
"undo substitution " u=x/2
int (d x)/(sqrt (x^2+4))=l n(x/2+sqrt(1+x^2/4))+C