How do you integrate int 1/sqrt(x^2+4)1x2+4 by trigonometric substitution?

1 Answer
Jul 25, 2016

int (d x)/(sqrt (x^2+4))=l n(x/2+sqrt(1+x^2/4))+Cdxx2+4=ln(x2+1+x24)+C

Explanation:

int (d x)/(sqrt (x^2+4))=?dxx2+4=?

"let be "u=x/2" ; " d x=2*d u" ; "x^2=4u^2let be u=x2 ; dx=2du ; x2=4u2

int (2*d u)/(sqrt(4u^2+4))=int(2*d u)/(sqrt(4(u^2+1))2du4u2+4=2du4(u2+1)

int(cancel(2)* d u)/(cancel(2)*sqrt(u^2+1))=int(d u)/(sqrt(u^2+1))

"now, substitute "u=tan v" ; "v=arc tan u

d u=sec ^2 v* d v

int (sec ^2 v*d v)/(sqrt(tan^2 v+1))" ;so "tan^2 v +1=sec ^2 v

int(sec^2 v*d v)/(sqrt(sec^2 v))=int (cancel(sec)^2 v*d v)/(cancel(sec) v)=int sec v*d v

"expand fraction by " tan v+sec v

int sec v*d v*(tan v+sec v)/(tan v+sec v)

int (sec v*tan v + sec ^2 v)/(tan v + sec v) *d v

k=tan v+ sec v

d k=(sec v* tan v+sec ^2 v) *d v

int ( d k)/k=l n k+C

"undo substitution "k=tan v +sec v

int (d x)/(sqrt (x^2+4))= l n(tan v+sec v)+C

sec v=sqrt(1+tan ^2 v)=sqrt (1+u^2)

int (d x)/(sqrt (x^2+4))=l n(u+sqrt(1+u^2))+C

"undo substitution " u=x/2

int (d x)/(sqrt (x^2+4))=l n(x/2+sqrt(1+x^2/4))+C