How do you find the integral of int 17/(16+x^2)dx1716+x2dx?

1 Answer
Dec 9, 2016

17/4 arctan(x/4)+C174arctan(x4)+C. Standard form: int1/(a^2+x^2)dx=(1/a)arctan (x/a)+C1a2+x2dx=(1a)arctan(xa)+C

Explanation:

Alternatively substitute x=4tan ux=4tanu and use 1+tan^2u=sec^2u1+tan2u=sec2u giving the integral as int (17 xx 4)sec^2 u/(16 sec^2 u)du(17×4)sec2u16sec2udu and hence the answer.