How do you findx281x2dx using trigonometric substitution?

1 Answer
Dec 6, 2015

=812sin1(x9)x81x22+C

Explanation:

Let x=9sinθ
Then dx=9cosθdθ and sinθ=x9

Then the original integral becomes

981sin2θ8181sin2θcosθdθ

Now using the trig identities sin2θ+cos2θ=1 and
sin2θ=2sinθcosθ, together with factorizations and laws of surds, we may compute the integral as

9×81sin2θ91sin2θcosθdθ

=81sin2θcosθcosθdθ

=81[θ2sin2θ4]+C

=812sin1(x9)812x981x29+C