Here ,
I=int1/sqrt(-e^(2x)+12e^x-27)dx
-e^(2x)+12e^x-27=9-e^(2x)+12e^x-36=9-(e^x-6)^2
:.I=int1/sqrt(9-(e^x-6)^2)dx
Subst. color(red)(e^x-6=3sinu)=>e^x=6+3sinu=>e^xdx=3cosudu
=>dx=(3cosudu)/(6+3sinu) andcolor(red)( sinu=(e^x-6)/3
So,
I=int1/sqrt(9-9sin^2u)*(3cosudu)/(6+3sinu)
=int1/(3cosu) xx (3cosu du)/(6+3sinu)
=int1/(6+3sinu)du=1/3int1/(2+sinu)du
Subst. color(blue)(tan(u/2)=t=>sec^2(u/2)*1/2du=dt=>du=(2dt)/(1+tan^2(u/2))
=>du=(2dt)/(1+t^2) and sinu=(2t)/(1+t^2)
:.I=1/3int1/(2+(2t)/(1+t^2)) xx(2dt)/(1+t^2)
=2/3int1/(2+2t^2+2t)dt=1/3int1/(t^2+t+1)dt
=1/3int1/(t^2+t+1/4+3/4)dt=1/3int1/((t+1/2)^2+(sqrt3/2)^2)dt
=1/3 1/(sqrt3/2)arc tan((t+1/2)/(sqrt3/2))+c
:.I=2/(3sqrt3)arctan((2t+1)/sqrt3)+c......to(A)
Now, color(blue)(t=tan(u/2)
=>t^2=tan^2(u/2)=(1-cosu)/(1+cosu)=(1-cosu)/(1+cosu)
xxcolor(green)((1-cosu)/(1-cosu))
=>t^2=(1-cosu)^2/(1-cos^2u)=(1-cosu)^2/sin^2u
=>t=(1-cosu)/sinu=(1-sqrt(1-sin^2u))/sinu
Subst. back color(red)(sinu=(e^x-6)/3
:.t=(1-sqrt(1-((e^x-6)/3)^2))/((e^x-6)/3)
:.t=(1-sqrt(9-(e^x-6)^2)/3)/((e^x-6)/3)=(3-sqrt(-e^(2x)+12x-27))/(e^x-6)
:.2t+1=(6-2sqrt(-e^(2x)+12e^x-27))/(e^x-6)+1
:.2t+1=((6-2sqrt(-e^(2x)+12e^x-27)+e^x-6))/(e^x-6)
:.2t+1=(e^x-2sqrt(-e^(2x)+12e^x-27))/(e^x-6)
So, from (A)
I=2/(3sqrt3)arc tan((e^x-2sqrt(-e^(2x)+12e^x-27))/(sqrt3(e^x-6)))+c