How do you integrate intdx/ sqrt(x^2 - a^2)dxx2a2?

2 Answers
Apr 19, 2018

intdx/sqrt(x^2-a^2)="arcosh"(x/a)+"c"dxx2a2=arcosh(xa)+c

Explanation:

intdx/sqrt(x^2-a^2)=intdx/(asqrt(x^2/a^2-1))=int1/(asqrt((x/a)^2-1))dxdxx2a2=dxax2a21=1a(xa)21dx

Now, let u=x/au=xa and du=1/adxdu=1adx

Then

int1/(asqrt((x/a)^2-1))dx=int1/sqrt(u^2-1)dx="arcosh"(u)+"c"="arcosh"(x/a)+"c"1a(xa)21dx=1u21dx=arcosh(u)+c=arcosh(xa)+c

Apr 19, 2018

int dx/sqrt(x^2-a^2) = ln abs (x +sqrt(x^2-a^2)) +Cdxx2a2=lnx+x2a2+C

Explanation:

The integrand is defined for x in (-oo,-a) uu (a,+oo)x(,a)(a,+). Let us focus first on x in (a,+oo)x(a,+) and substitute:

x = a sectx=asect

dx = asect tantdx=asecttant

with t in (0,pi/2)t(0,π2)

so:

int dx/sqrt(x^2-a^2) = int (asect tant dt)/sqrt(a^2sec^2t-a^2)dxx2a2=asecttantdta2sec2ta2

int dx/sqrt(x^2-a^2) = int (sect tant dt)/sqrt(sec^2t-1)dxx2a2=secttantdtsec2t1

Use now the trigonometric identity:

sec^2t-1 = tan^2tsec2t1=tan2t

and as for t in (0,pi/2)t(0,π2) the tangent is positive:

sqrt(sec^2t-1) = tan^sec2t1=tan

Then:

int dx/sqrt(x^2-a^2) = int (sect tant dt)/tantdxx2a2=secttantdttant

int dx/sqrt(x^2-a^2) = int sect dtdxx2a2=sectdt

int dx/sqrt(x^2-a^2) = ln abs (sect +tant) +Cdxx2a2=ln|sect+tant|+C

Undoing the substitution:

int dx/sqrt(x^2-a^2) = ln abs (x/a +sqrt(x^2/a^2-1)) +Cdxx2a2=ln∣ ∣xa+x2a21∣ ∣+C

int dx/sqrt(x^2-a^2) = ln abs (x +sqrt(x^2-a^2)) +Cdxx2a2=lnx+x2a2+C

By differentiating we can see that the solution is valid also for x in (-oo,-3)x(,3)