How do you integrate int 1/sqrt(2x-12sqrtx-5) 12x12x5 using trigonometric substitution?

1 Answer
May 2, 2018

I=sqrt(2x-12sqrtx-5)+3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx- 5)|+C,I=2x12x5+32ln2x32+2x12x5+C,
There is no any trig.function in the answer .So it is difficult to proceed with trig substitution.

Explanation:

Here,

I=int1/sqrt(2x-12sqrtx-5)dxI=12x12x5dx

Let, sqrtx=t=>x=t^2=>dx=2tdtx=tx=t2dx=2tdt

I=int(2t)/sqrt(2t^2-12t-5)dtI=2t2t212t5dt

=1/2int(4t-12+12)/sqrt(2t^2-12t-5)dt=124t12+122t212t5dt

=color(red)(1/2int(4t-12)/sqrt(2t^2-12t-5)dt)+color(blue) (1/2int12/sqrt(2t^2-12t-5)dt=124t122t212t5dt+12122t212t5dt

I=color(red)(I_1)+color(blue)(I_2)...to(A)

Now, I_1=1/2int(4t-12)/sqrt(2t^2-12t-5)dt

Take, sqrt(2t^2-12t-5)=u=>2t^2-12t-5=u^2

=>4t-12=2udu

:.I_1=1/2int(2u)/udu=intdu=u+c_1,tou=sqrt(2t^2-12t-5)

=sqrt(2t^2-12t-5)+c_1,where,sqrtx=t

:.I_1=sqrt(2x-12sqrtx-5)+c_1

Also, I_2=1/2int12/sqrt(2t^2-12t-5)dt

I_2=6/sqrt2int1/sqrt(t^2-6t-5/2)dt

=6/sqrt2int1/sqrt(t^2-6t+9-23/2)dtto[-5/2=(18-23)/2]

=3sqrt2int1/sqrt((t-3)^2-(sqrt(23/2))^2)dt

=3sqrt2ln|t-3+sqrt((t-3)^2-(sqrt(23/2))^2)|+c

=3sqrt2ln|t-3+color(violet)(sqrt(t^2-6t-5/2))|+c

=3sqrt2ln|t-3+sqrt(2t^2-12t-5)/color(orange)(sqrt2)|+color(orange)(c

I_2=3sqrt2ln|sqrt2t-3sqrt2+sqrt(2t^2-12t-5)|+color(orange)(c_2

Subst .back t=sqrtx

I_2=3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx-5)|+c_2

Hence, from (A),

I=sqrt(2x-12sqrtx-5)+3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx- 5)|+C,

where,C=c_1+c_2