Here,
I=int1/sqrt(2x-12sqrtx-5)dxI=∫1√2x−12√x−5dx
Let, sqrtx=t=>x=t^2=>dx=2tdt√x=t⇒x=t2⇒dx=2tdt
I=int(2t)/sqrt(2t^2-12t-5)dtI=∫2t√2t2−12t−5dt
=1/2int(4t-12+12)/sqrt(2t^2-12t-5)dt=12∫4t−12+12√2t2−12t−5dt
=color(red)(1/2int(4t-12)/sqrt(2t^2-12t-5)dt)+color(blue)
(1/2int12/sqrt(2t^2-12t-5)dt=12∫4t−12√2t2−12t−5dt+12∫12√2t2−12t−5dt
I=color(red)(I_1)+color(blue)(I_2)...to(A)
Now, I_1=1/2int(4t-12)/sqrt(2t^2-12t-5)dt
Take, sqrt(2t^2-12t-5)=u=>2t^2-12t-5=u^2
=>4t-12=2udu
:.I_1=1/2int(2u)/udu=intdu=u+c_1,tou=sqrt(2t^2-12t-5)
=sqrt(2t^2-12t-5)+c_1,where,sqrtx=t
:.I_1=sqrt(2x-12sqrtx-5)+c_1
Also, I_2=1/2int12/sqrt(2t^2-12t-5)dt
I_2=6/sqrt2int1/sqrt(t^2-6t-5/2)dt
=6/sqrt2int1/sqrt(t^2-6t+9-23/2)dtto[-5/2=(18-23)/2]
=3sqrt2int1/sqrt((t-3)^2-(sqrt(23/2))^2)dt
=3sqrt2ln|t-3+sqrt((t-3)^2-(sqrt(23/2))^2)|+c
=3sqrt2ln|t-3+color(violet)(sqrt(t^2-6t-5/2))|+c
=3sqrt2ln|t-3+sqrt(2t^2-12t-5)/color(orange)(sqrt2)|+color(orange)(c
I_2=3sqrt2ln|sqrt2t-3sqrt2+sqrt(2t^2-12t-5)|+color(orange)(c_2
Subst .back t=sqrtx
I_2=3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx-5)|+c_2
Hence, from (A),
I=sqrt(2x-12sqrtx-5)+3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx-
5)|+C,
where,C=c_1+c_2