What is the integral of x*sqrt(25+x^2)?

1 Answer
Jul 29, 2015

Notice how sqrt(25 + x^2) prop sqrt(a^2 + x^2), which implies x = atantheta with a = 5.

If we let:

x = 5tantheta
dx = 5sec^2thetad theta
sqrt(25 + x^2) = sqrt(5^2 + 5^2tan^2theta) = 5sectheta

Then we get:

= int 5tantheta*5sectheta*5sec^2thetad theta

= 125int tanthetasecthetasec^2thetad theta

Then, if we let:

u = sectheta
du = secthetatanthetad theta

we get:

= 125int u^2du

= 125(u^3/3)

= 125((sec^3theta)/3)

= ((5^3sec^3theta)/3)

= ((5sectheta)^3)/3

= ((sqrt(25 + x^2))^3)/3

= color(blue)(((25 + x^2)^("3/2"))/3 + C)