How do you integrate int sec^3(pix)?

1 Answer
May 7, 2018

I=1/pi[tan(pix)/2sec(pix)+1/2ln|tan(pix)+sec(pix)|]+c

Explanation:

Here,

I=intsec^3(pix)dx

=intsec(pix)sec^2(pix)dx

I=intsqrt(1+tan^2(pix))sec^2(pix)dx

Let,tan(pix)=u=>sec^2(pix)*pidx=du

=>sec^2(pix)dx=1/pidu

So,

I=1/piintsqrt(1+u^2)du

=1/pi[u/2sqrt(1+u^2)+1/2ln|u+sqrt(1+u^2)|]+c

Subst.,u=tan(pix)

=1/pi[tan(pix)/2sqrt(1+tan^2(pix))+1/2ln|tan(pix)+sqrt(1+tan^2(pi x))|]+c

I=1/pi[tan(pix)/2sec(pix)+1/2ln|tan(pix)+sec(pix)|]+c