How do you integrate int sec^3(pix)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer maganbhai P. May 7, 2018 I=1/pi[tan(pix)/2sec(pix)+1/2ln|tan(pix)+sec(pix)|]+c Explanation: Here, I=intsec^3(pix)dx =intsec(pix)sec^2(pix)dx I=intsqrt(1+tan^2(pix))sec^2(pix)dx Let,tan(pix)=u=>sec^2(pix)*pidx=du =>sec^2(pix)dx=1/pidu So, I=1/piintsqrt(1+u^2)du =1/pi[u/2sqrt(1+u^2)+1/2ln|u+sqrt(1+u^2)|]+c Subst.,u=tan(pix) =1/pi[tan(pix)/2sqrt(1+tan^2(pix))+1/2ln|tan(pix)+sqrt(1+tan^2(pi x))|]+c I=1/pi[tan(pix)/2sec(pix)+1/2ln|tan(pix)+sec(pix)|]+c Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 5310 views around the world You can reuse this answer Creative Commons License