How do you integrate int 1/sqrt(4x^2-12x-16) using trigonometric substitution?

3 Answers
Mar 21, 2018

int dx/sqrt(4x^2-12x-16) = 1/2ln abs ((2x-3)+sqrt(4x^2-12x-16))+C

Explanation:

Complete the square under the root at the denominator:

int dx/sqrt(4x^2-12x-16) = int dx/sqrt( (2x-3)^2 -25)

Substitute now:

2x -3 = 5sect

dx = 5/2sect tant dt

then:

int dx/sqrt(4x^2-12x-16) = 5/2 int (sect tantdt)/sqrt( 25sec^2t -25)

int dx/sqrt(4x^2-12x-16) = 1/2 int (sect tantdt)/sqrt( sec^2t -1)

Use now the trigonometric identity:

sec^2t-1 = tan^2t

Note now that the function is defined for:

abs(2x-3) > 5

If we restrict to the interval:

2x-3 > 5

then sect is positive and:

sqrt( sec^2t -1) = tant

so that:

int dx/sqrt(4x^2-12x-16) = 1/2 int (sect tantdt)/tant = 1/2 int sectdt

To solve this last integral there is a well known trick:

int sect dt = int sect (sect+tant)/(sect+tant) dt

int sect dt = int (sec^2t+sect tant)/(sect+tant) dt

int sect dt = int (d(sect+ tant))/(sect+tant) dt

int sect dt = ln abs (sect+tant) +C

so:

int dx/sqrt(4x^2-12x-16) = 1/2ln abs (sect+tant) +C

and undoing the substitution:

int dx/sqrt(4x^2-12x-16) = 1/2ln abs ((2x-3)/5 +sqrt(((2x-3)/5)^2-1))+C

and simplifying:

int dx/sqrt(4x^2-12x-16) = 1/2ln abs ((2x-3)+sqrt(4x^2-12x-16))+C

Mar 21, 2018

I=1/2ln|(2x-3)+sqrt(4x^2-12x-16)|+C

Explanation:

Here,
4x^2-12x-16=4x^2-12x+9-25=(2x-3)^2-(5)^2
So,

I=int1/sqrt(4x^2-12x-16)dx
=int1/sqrt((2x-3)^2-(5)^2)dx

Take ,color(red)(2x-3=5secu)=>secu=(2x-3)/5and
=>2dx=5secutanudu
=>dx=5/2secutanudu
I=int1/sqrt(25sec^2u-25)(5/2secutanu)du
I=5/2int(secutanu)/(5sqrt(sec^2u-1))du
=1/2int(secutanu)/(tanu)du
=1/2intsecudu
=1/2ln|secu+tanu|+c
=1/2ln|secu+sqrt(sec^2u-1)|+c
=1/2ln|(2x-3)/5+sqrt(((2x-3)/5)^2)-1|+c
=1/2ln|(2x-3)/5+sqrt((2x-3)^2-25)/5|+c
=1/2[ln|(2x-3)+sqrt(4x^2-12x-16)|-ln5]+c
I=1/2ln|(2x-3)+sqrt(4x^2-12x-16)|+C,
where, C=c-1/2ln5
It is better to use int1/sqrt(t^2-A^2)dt=ln|t+sqrt(t^2-A^2)|+c
for ,2x-3=t=>dx=1/2dt=>I=int1/sqrt(t^2-5^2)(1/2dt)=1/2ln|t+sqrt(t^2-25)|+c=1/2ln|(2x-3)+sqrt(4x^2-12x-16)|+c

Mar 21, 2018

The answer is =1/2ln(|sqrt((2x-3)^2/25-1)+(2x-3)/5|)+C

Explanation:

The denominator is

sqrt(4x^2-12x-16)=2sqrt(x^2-3x-4)

=2sqrt(x^2-3x+9/4-4-9/4)

=2sqrt((x-3/2)^2-25/4)

=5sqrt(((2x-3)/5)^2-1)

int(dx)/sqrt(4x^2-12x-16)=1/2int(dx)/(sqrt((x-3/2)^2-25/4))

Let u=(2x-3)/5, =>, du=2/5dx

Therefore,

int(dx)/sqrt(4x^2-12x-16)=1/2int(du)/(sqrt(u^2-1))

Let u=sectheta, =>, du=secthetatanthetad theta

1/2int(du)/(sqrt(u^2-1))=1/2int(secthetatanthetad theta)/(sqrt(sec^2theta-1))

=1/2intsecthetad theta

=1/2int(sectheta(sectheta+tantheta)d theta)/(sectheta+tantheta)

=1/2int((sec^2theta+sethetatantheta)d theta)/(sec theta+ tan theta)

Let v=sectheta+tantheta

=>, dv=(sec^2theta+secthetatantheta)d theta

And finally,

intsecthetad theta=int(dv)/v

=1/2ln(v)

=1/2ln(sqrt(u^2-1)+u)

=1/2ln(|sqrt((2x-3)^2/25-1)+(2x-3)/5|)+C