How do I find tan4xdx?

1 Answer
Mar 7, 2015

Well, this one is quite difficult;

tan4(x)dx=tan2(x)tan2(x)dx=
=sin2(x)cos2(x)tan2(x)dx=
=1cos2(x)cos2(x)tan2(x)dx=
=[1cos2(x)1]tan2(x)dx=
=[tan2(x)cos2(x)tan2(x)]dx=
But d[tan(x)]=1cos2(x)dx

=tan2(x)d[tan(x)]tan2(x)dx=
=tan3(x)3tan2(x)dx=
=tan3(x)3sin2(x)cos2(x)dx=
=tan3(x)3[1cos2(x)cos2(x)]dx=
=tan3(x)3{1cos2(x)dxdx}=
=tan3(x)3tan(x)x+c