How do I find ∫tan4xdx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Gió Mar 7, 2015 Well, this one is quite difficult; ∫tan4(x)dx=∫tan2(x)tan2(x)dx= =∫sin2(x)cos2(x)tan2(x)dx= =∫1−cos2(x)cos2(x)tan2(x)dx= =∫[1cos2(x)−1]tan2(x)dx= =∫[tan2(x)cos2(x)−tan2(x)]dx= But d[tan(x)]=1cos2(x)dx =∫tan2(x)d[tan(x)]−∫tan2(x)dx= =tan3(x)3−∫tan2(x)dx= =tan3(x)3−∫sin2(x)cos2(x)dx= =tan3(x)3−∫[1−cos2(x)cos2(x)]dx= =tan3(x)3−{∫1cos2(x)dx−∫dx}= =tan3(x)3−tan(x)−x+c Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 2310 views around the world You can reuse this answer Creative Commons License