How do you integrate x3144x2dx using trigonometric substitution?

1 Answer
Sep 7, 2016

13144x2(x2+288)+C

Explanation:

Use the substitution x=12sinθ. From here we see that dx=12cosθdθ. Substituting:

x3144x2dx=1728sin3θ(12cosθ)144144sin2θdθ

Factoring 1144=112 from the square root:

=1728sin3θ(12cosθ)121sin2θdθ

Canceling the 12s and recalling that since sin2θ+cos2θ=1, we know that cosθ=1sin2θ:

=1728sin3θcosθcosθdθ=1728sin3θdθ

We will use here sin2θ=1cos2θ:

=1728sin2θsinθdθ=1728(1cos2θ)sinθdθ

Now, using the substitution u=cosθ, so that du=sinθdθ:

=1728(1u2)du=1728u2du1728du

Integrating using the power rule for integration:

=1728(u33)1728u=576u31728u

Reverse substituting with u=cosθ:

=576cos3θ1728cosθ

Because our substitution is sinθ=x12, we should write this in terms of sine functions. That is, cosθ=1sin2θ and cos3θ=(1sin2θ)32:

=576(1sin2θ)3217281sin2θ

Factoring:

=1sin2θ(576(1sin2θ)1728)

Now using sinθ=x12:

=1x2144(576(1x2144)1728)

=144x2144(5764x21728)

Factoring 1144=112 from the square root and 4 from the parentheses:

=13144x2(x2+288)+C