How do you integrate ∫x3√144−x2dx using trigonometric substitution?
1 Answer
Explanation:
Use the substitution
∫x3√144−x2dx=∫1728sin3θ(12cosθ)√144−144sin2θdθ
Factoring
=∫1728sin3θ(12cosθ)12√1−sin2θdθ
Canceling the
=1728∫sin3θcosθcosθdθ=1728∫sin3θdθ
We will use here
=1728∫sin2θsinθdθ=1728∫(1−cos2θ)sinθdθ
Now, using the substitution
=−1728∫(1−u2)du=1728∫u2du−1728∫du
Integrating using the power rule for integration:
=1728(u33)−1728u=576u3−1728u
Reverse substituting with
=576cos3θ−1728cosθ
Because our substitution is
=576(1−sin2θ)32−1728√1−sin2θ
Factoring:
=√1−sin2θ(576(1−sin2θ)−1728)
Now using
=√1−x2144(576(1−x2144)−1728)
=√144−x2144(576−4x2−1728)
Factoring
=−13√144−x2(x2+288)+C