How do you integrate int 1/(xsqrt(16x^2-9))1x16x29 by trigonometric substitution?

1 Answer
Mar 18, 2018

int dx/(xsqrt(16x^2-9)) = x/(3absx) arcsec(4/3x)+Cdxx16x29=x3|x|arcsec(43x)+C

Explanation:

int dx/(xsqrt(16x^2-9)) = int dx/(3xsqrt ((4/3x)^2 -1))dxx16x29=dx3x(43x)21

Substitute:

4/3 x = sect43x=sect, dx = 3/4 sect tant dtdx=34secttantdt

and restrict for now to x in (3/4,+oo)x(34,+) so that t in (0,pi/2)t(0,π2)

int dx/(xsqrt(16x^2-9)) = 3/4 int (sect tant dt)/(9/4 sect sqrt(sec^2t-1))dxx16x29=34secttantdt94sectsec2t1

int dx/(xsqrt(16x^2-9)) = 1/3 int ( tant dt)/ sqrt(sec^2t-1)dxx16x29=13tantdtsec2t1

Use now the trigonometric identity:

sec^2t -1 = 1/cos^2t -1 = (1-sin^2t)/cos^2t = tan^2tsec2t1=1cos2t1=1sin2tcos2t=tan2t

As t in (0,pi/2) => tant >=0t(0,π2)tant0

then:

sqrt(sec^2t-1) = tantsec2t1=tant

and:

int dx/(xsqrt(16x^2-9)) = 1/3 int ( tant dt)/ tant = 1/3 int dt =t/3 +Cdxx16x29=13tantdttant=13dt=t3+C

and undoing the substitution:

int dx/(xsqrt(16x^2-9)) = 1/3 arcsec(4/3x)+Cdxx16x29=13arcsec(43x)+C

For x in(-oo,-3/4)x(,34) we can use the same procedure except that:

sqrt(sec^2t-1) = -tantsec2t1=tant

and accordingly:

int dx/(xsqrt(16x^2-9)) = -1/3 arcsec(4/3x)+Cdxx16x29=13arcsec(43x)+C

So we can express the integral for any xx as:

int dx/(xsqrt(16x^2-9)) = x/(3absx) arcsec(4/3x)+Cdxx16x29=x3|x|arcsec(43x)+C

Note that as:

arcsec x = arctan (xsqrt((x^2-1)/x^2))arcsecx=arctan(xx21x2)

We can also express the integral as:

int dx/(xsqrt(16x^2-9)) = x/(3absx) arctan ((4x)/3 sqrt (( 16x^2-9)/(16x^2))) +Cdxx16x29=x3|x|arctan(4x316x2916x2)+C

int dx/(xsqrt(16x^2-9)) = x/(3absx) arctan ( sqrt ( 16x^2-9)/3) +Cdxx16x29=x3|x|arctan(16x293)+C