How do you integrate int 1/(xsqrt(x^2-1) )dx using trigonometric substitution?

1 Answer
Nov 5, 2017

int \ 1/(xsqrt(x^2-1)) \ dx = arcsecx + C

Explanation:

We seek:

I = int \ 1/(xsqrt(x^2-1)) \ dx

Let us attempt a substitution of the form:

sectheta=x

Then differentiating wrt x we have:

sectheta tan theta (d theta)/dx = 1

Substituting into the integral we have:

I = int \ 1/(sec theta sqrt(sec^2theta-1)) \ sectheta tan theta \ d theta
\ \ = int \ 1/(sec theta sqrt(tan^2theta)) \ sectheta tan theta \ d theta
\ \ = int \ 1/(sec theta tan theta) \ sectheta tan theta \ d theta
\ \ = int \ d theta
\ \ = theta + C

Restoring the substitution gives:

I = arcsecx + C