How do you integrate int 1/(xsqrt(x^2-1) )dx using trigonometric substitution?
1 Answer
Nov 5, 2017
int \ 1/(xsqrt(x^2-1)) \ dx = arcsecx + C
Explanation:
We seek:
I = int \ 1/(xsqrt(x^2-1)) \ dx
Let us attempt a substitution of the form:
sectheta=x
Then differentiating wrt
sectheta tan theta (d theta)/dx = 1
Substituting into the integral we have:
I = int \ 1/(sec theta sqrt(sec^2theta-1)) \ sectheta tan theta \ d theta
\ \ = int \ 1/(sec theta sqrt(tan^2theta)) \ sectheta tan theta \ d theta
\ \ = int \ 1/(sec theta tan theta) \ sectheta tan theta \ d theta
\ \ = int \ d theta
\ \ = theta + C
Restoring the substitution gives:
I = arcsecx + C