How do you integrate x^2/sqrt(9-x^2) dxx29x2dx?

1 Answer

I got 9/2arcsin(x/3) - x/2sqrt(9-x^2) + C92arcsin(x3)x29x2+C.


You can do this with trig substitution. Notice how this is of the form

sqrt(a^2-x^2),a2x2,

which looks like

sqrt(1 - sin^2theta),1sin2θ,

while

sin^2theta + cos^2theta = 1.sin2θ+cos2θ=1.

So, let:

a = sqrt9 = 3a=9=3
x = asintheta = 3sinthetax=asinθ=3sinθ
dx = acosthetad theta = 3costhetad thetadx=acosθdθ=3cosθdθ

That gives

sqrt(9 - x^2) = sqrt(3^2 - (3sintheta)^2) = sqrt9sqrt(1-sin^2theta) = 3costheta9x2=32(3sinθ)2=91sin2θ=3cosθ
x^2 = 9sin^2thetax2=9sin2θ

Now we just have

int x^2/(sqrt(9-x^2))dx = int (9sin^2theta)/(cancel(3costheta))(cancel(3costheta)dtheta)

= 9intsin^2thetad theta.

There's a useful identity, where sin^2theta = (1-cos(2theta))/2.

=> 9/2int1-cos(2theta)dtheta

= 9/2intdtheta - 9/2intcos(2theta)dtheta

= 9/2theta - 9/4sin2theta + C

Draw out the right triangle if needed, where x/3 = sintheta:

theta = arcsin(x/3)
costheta = sqrt(9-x^2)/3
sintheta = x/3

Use the identity

sin2theta = 2sinthetacostheta,

to then get

=> 9/4(2sinthetacostheta) = (cancel(9)/cancel(4)^2)*cancel(2)*(x/cancel(3)sqrt(9-x^2)/cancel(3)) = (x/2)sqrt(9-x^2)

Thus, our final result is

=> color(blue)(9/2arcsin(x/3) - x/2sqrt(9-x^2) + C)