What is int 9/(x^2sqrt(4x+1))dx?
I found this integral question I asked in Yahoo! Answers over 4 years ago. It was answered, but I think we can do better!
I found this integral question I asked in Yahoo! Answers over 4 years ago. It was answered, but I think we can do better!
2 Answers
I got:
18ln|(sqrt(4x + 1) + 1)/(sqrt(4x + 1) - 1)| - (9sqrt(4x + 1))/(x) + C
and to prove that it worked, Wolfram Alpha shows that the derivative of this is the original integrand for
Let's take a crack at this. I can expect some form of substitution, and probably partial fractions.
Let:
u = sqrt(4x + 1)
du = 2/(sqrt(4x + 1))dx
=> dx = u/2du
x^2 = (u^2 - 1)^2/16
This gives:
=> 9 int 1/(x^2sqrt(4x + 1))dx
= 9 int 16/((u^2 - 1)^2cancel(u))cancel(u)/2du
= 72 int 1/((u^2 - 1)^2)du
Yep, partial fractions. With this, we have:
int 1/(u^2 - 1)^2
= int A/(u+1) + B/(u+1)^2 + C/(u-1) + D/(u-1)^2du
Getting common denominators allows us to cancel out the denominators and focus on the numerator:
=> A(u + 1)(u - 1)^2 + B(u - 1)^2 + C(u - 1)(u + 1)^2 + D(u + 1)^2
= (Au + A)(u^2 - 2u + 1) + Bu^2 - 2Bu + B + (Cu - C)(u^2 + 2u + 1) + Du^2 + 2Du + D
= color(darkblue)(Au^3) - color(orange)(2Au^2) + color(cyan)(Au) + color(orange)(Au^2) - color(cyan)(2Au) + color(red)(A) + color(orange)(Bu^2) - color(cyan)(2Bu) + color(red)(B) + color(darkblue)(Cu^3) + color(orange)(2Cu^2) + color(cyan)(Cu) - color(orange)(Cu^2) - color(cyan)(2Cu) - color(red)(C) + color(orange)(Du^2) + color(cyan)(2Du) + color(red)(D)
Collect like terms (making sure terms are grouped by addition!) to get:
= Au^3 + Cu^3 color(red)(cancel(color(black)(- 2Au^2 + Au^2)))^(-Au^2) + Bu^2 + color(red)(cancel(color(black)(2Cu^2 - Cu^2)))^(Cu^2) + Du^2 + color(red)(cancel(color(black)(Au - 2Au)))^(-Au) - 2Bu + color(red)(cancel(color(black)(Cu - 2Cu)))^(-Cu) + 2Du + A + B - C + D
=> (A + C)u^3 + (-A + B + C + D)u^2 + (-A - 2B - C + 2D)u + (A + B - C + D) = 0u^3 + 0u^2 + 0u + 1
This means we have a system of equations:
A + 0B + C + 0D = 0
-A + B + C + D = 0
-A - 2B - C + 2D = 0
A + B - C + D = 1
Or, the matrix:
[(1,0,1,0,|,0),(-1,1,1,1,|,0),(-1,-2,-1,2,|,0),(1,1,-1,1,|,1)] where the first four columns imply the variable
A ,B ,C , orD , respectively, and the last column is the righthand side of the original system of equations.
We can use elementary row operations to simplify this matrix into one that gives a more obvious answer.
Let
stackrel(R_1 + R_2" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(-1,-2,-1,2,|,0),(1,1,-1,1,|,1)]
stackrel(R_1 + R_3" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(0,-2,0,2,|,0),(1,1,-1,1,|,1)]
stackrel(-R_1 + R_4" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(0,-2,0,2,|,0),(0,1,-2,1,|,1)]
stackrel(-R_2 + R_4" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(0,-2,0,2,|,0),(0,0,-4,0,|,1)]
This is far enough to find that:
-4C = 1 => C = -1"/"4
-2B + 2D = 0 => B = D
B + 2C + D = 0 => C = -D = -B
A = -C
Therefore, our solutions are:
color(green)(A = B = D = 1"/"4)
color(green)(C = -1"/"4)
That means:
int9/(x^2sqrt(4x + 1))dx = 72int 1/(u^2 - 1)^2du
= 72/4int 1/(u+1) + 1/(u+1)^2 - 1/(u-1) + 1/(u-1)^2du
= 18[ln|u + 1| - 1/(u+1) - ln|u - 1| - 1/(u-1)]
= 18[ln|(u+1)/(u-1)| - (u-1)/(u^2 - 1) - (u+1)/(u^2 - 1)]
= 18[ln|(u+1)/(u-1)| - ((u-1)/(u^2 - 1) + (u+1)/(u^2 - 1))]
= 18[ln|(u+1)/(u-1)| - (2u)/(u^2 - 1)]
= 18ln|(u+1)/(u-1)| - (36u)/(u^2 - 1)
Finally, substitute back in
=> color(blue)(int 9/(x^2sqrt(4x + 1))dx)
= color(blue)(18ln|(sqrt(4x + 1) + 1)/(sqrt(4x + 1) - 1)| - (9sqrt(4x + 1))/(x) + C)
Yep, still hard, even today!
If we hate partial fractions as I do, we can follow the method @truong-son-n used with the substitution
int9/(x^2sqrt(4x+1))dx=72int1/(t^2-1)^2dt
Now apply the substitution
=72int(secthetatantheta)/(sec^2theta-1)^2d theta
Since
=72int(secthetatantheta)/tan^4thetad theta=72intsectheta/tan^3theta=72intcos^2theta/sin^3theta=72intcot^2thetacscthetad theta
From
=72intcsc^3thetad theta-72intcscthetad theta
Letting
{(u=csctheta" "=>" "du=-cscthetacotthetad theta),(dv=csc^2thetad theta" "=>" "v=-cottheta):}
So
I=-cscthetacottheta-intcscthetacot^2thetad theta
Again using
I=-cscthetacottheta-intcsc^3thetad theta+intcscthetad theta
Using
2I=-cscthetacottheta-lnabs(cottheta+csctheta)
intcsc^3thetad theta=-1/2cscthetacottheta-1/2lnabs(cottheta+csctheta)
Which we will plug back into our original integral:
=72(-1/2cscthetacottheta-1/2lnabs(cottheta+csctheta))-72intcscthetad theta
=-36cscthetacottheta-36lnabs(cottheta+csctheta)+72lnabs(cottheta+csctheta)
=-36cscthetacottheta+36lnabs(cottheta+csctheta)
Our substitution was
Thus
Plugging these in gives:
=-(36t)/(t^2-1)+36lnabs((t+1)/sqrt(t^2-1))
With
=-(36sqrt(4x+1))/((4x+1)-1)+36lnabs((sqrt(4x+1)+1)/(sqrt((4x+1)-1)))
=-(9sqrt(4x+1))/x+36lnabs((sqrt(4x+1)+1)/(2sqrtx))+C
Which, when graphically confirmed, is the same answer that Truong-Son found.