What is int 9/(x^2sqrt(4x+1))dx?

I found this integral question I asked in Yahoo! Answers over 4 years ago. It was answered, but I think we can do better!

2 Answers
Dec 25, 2016

I got:

18ln|(sqrt(4x + 1) + 1)/(sqrt(4x + 1) - 1)| - (9sqrt(4x + 1))/(x) + C

and to prove that it worked, Wolfram Alpha shows that the derivative of this is the original integrand for x > 0.


Let's take a crack at this. I can expect some form of substitution, and probably partial fractions.

Let:

u = sqrt(4x + 1)

du = 2/(sqrt(4x + 1))dx
=> dx = u/2du

x^2 = (u^2 - 1)^2/16

This gives:

=> 9 int 1/(x^2sqrt(4x + 1))dx

= 9 int 16/((u^2 - 1)^2cancel(u))cancel(u)/2du

= 72 int 1/((u^2 - 1)^2)du

Yep, partial fractions. With this, we have:

int 1/(u^2 - 1)^2

= int A/(u+1) + B/(u+1)^2 + C/(u-1) + D/(u-1)^2du

Getting common denominators allows us to cancel out the denominators and focus on the numerator:

=> A(u + 1)(u - 1)^2 + B(u - 1)^2 + C(u - 1)(u + 1)^2 + D(u + 1)^2

= (Au + A)(u^2 - 2u + 1) + Bu^2 - 2Bu + B + (Cu - C)(u^2 + 2u + 1) + Du^2 + 2Du + D

= color(darkblue)(Au^3) - color(orange)(2Au^2) + color(cyan)(Au) + color(orange)(Au^2) - color(cyan)(2Au) + color(red)(A) + color(orange)(Bu^2) - color(cyan)(2Bu) + color(red)(B) + color(darkblue)(Cu^3) + color(orange)(2Cu^2) + color(cyan)(Cu) - color(orange)(Cu^2) - color(cyan)(2Cu) - color(red)(C) + color(orange)(Du^2) + color(cyan)(2Du) + color(red)(D)

Collect like terms (making sure terms are grouped by addition!) to get:

= Au^3 + Cu^3 color(red)(cancel(color(black)(- 2Au^2 + Au^2)))^(-Au^2) + Bu^2 + color(red)(cancel(color(black)(2Cu^2 - Cu^2)))^(Cu^2) + Du^2 + color(red)(cancel(color(black)(Au - 2Au)))^(-Au) - 2Bu + color(red)(cancel(color(black)(Cu - 2Cu)))^(-Cu) + 2Du + A + B - C + D

=> (A + C)u^3 + (-A + B + C + D)u^2 + (-A - 2B - C + 2D)u + (A + B - C + D) = 0u^3 + 0u^2 + 0u + 1

This means we have a system of equations:

A + 0B + C + 0D = 0
-A + B + C + D = 0
-A - 2B - C + 2D = 0
A + B - C + D = 1

Or, the matrix:

[(1,0,1,0,|,0),(-1,1,1,1,|,0),(-1,-2,-1,2,|,0),(1,1,-1,1,|,1)]

where the first four columns imply the variable A, B, C, or D, respectively, and the last column is the righthand side of the original system of equations.

We can use elementary row operations to simplify this matrix into one that gives a more obvious answer.

Let cR_i + R_j denote multiplying row i by a constant c, adding the result to row j, and storing it in row j. Then:

stackrel(R_1 + R_2" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(-1,-2,-1,2,|,0),(1,1,-1,1,|,1)]

stackrel(R_1 + R_3" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(0,-2,0,2,|,0),(1,1,-1,1,|,1)]

stackrel(-R_1 + R_4" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(0,-2,0,2,|,0),(0,1,-2,1,|,1)]

stackrel(-R_2 + R_4" ")(->)[(1,0,1,0,|,0),(0,1,2,1,|,0),(0,-2,0,2,|,0),(0,0,-4,0,|,1)]

This is far enough to find that:

-4C = 1 => C = -1"/"4

-2B + 2D = 0 => B = D

B + 2C + D = 0 => C = -D = -B

A = -C

Therefore, our solutions are:

color(green)(A = B = D = 1"/"4)
color(green)(C = -1"/"4)

That means:

int9/(x^2sqrt(4x + 1))dx = 72int 1/(u^2 - 1)^2du

= 72/4int 1/(u+1) + 1/(u+1)^2 - 1/(u-1) + 1/(u-1)^2du

= 18[ln|u + 1| - 1/(u+1) - ln|u - 1| - 1/(u-1)]

= 18[ln|(u+1)/(u-1)| - (u-1)/(u^2 - 1) - (u+1)/(u^2 - 1)]

= 18[ln|(u+1)/(u-1)| - ((u-1)/(u^2 - 1) + (u+1)/(u^2 - 1))]

= 18[ln|(u+1)/(u-1)| - (2u)/(u^2 - 1)]

= 18ln|(u+1)/(u-1)| - (36u)/(u^2 - 1)

Finally, substitute back in u = sqrt(4x + 1) to get:

=> color(blue)(int 9/(x^2sqrt(4x + 1))dx)

= color(blue)(18ln|(sqrt(4x + 1) + 1)/(sqrt(4x + 1) - 1)| - (9sqrt(4x + 1))/(x) + C)

Yep, still hard, even today!

Jan 14, 2017

If we hate partial fractions as I do, we can follow the method @truong-son-n used with the substitution t=sqrt(4x+1) up to the point:

int9/(x^2sqrt(4x+1))dx=72int1/(t^2-1)^2dt

Now apply the substitution t=sectheta. Thus dt=secthetatanthetad theta.

=72int(secthetatantheta)/(sec^2theta-1)^2d theta

Since sec^2theta-1=tan^2theta:

=72int(secthetatantheta)/tan^4thetad theta=72intsectheta/tan^3theta=72intcos^2theta/sin^3theta=72intcot^2thetacscthetad theta

From cot^2theta=csc^2theta-1:

=72intcsc^3thetad theta-72intcscthetad theta

Letting I=intcsc^3thetad theta, we will perform integration by parts letting

{(u=csctheta" "=>" "du=-cscthetacotthetad theta),(dv=csc^2thetad theta" "=>" "v=-cottheta):}

So

I=-cscthetacottheta-intcscthetacot^2thetad theta

Again using cot^2theta=csc^2theta-1:

I=-cscthetacottheta-intcsc^3thetad theta+intcscthetad theta

Using I=csc^3theta, that is, noticing the original integral is back into the mix, and also using the fairly well-known integral intcscthetad theta=-lnabs(cottheta+csctheta) we see that

2I=-cscthetacottheta-lnabs(cottheta+csctheta)

intcsc^3thetad theta=-1/2cscthetacottheta-1/2lnabs(cottheta+csctheta)

Which we will plug back into our original integral:

=72(-1/2cscthetacottheta-1/2lnabs(cottheta+csctheta))-72intcscthetad theta

=-36cscthetacottheta-36lnabs(cottheta+csctheta)+72lnabs(cottheta+csctheta)

=-36cscthetacottheta+36lnabs(cottheta+csctheta)

Our substitution was t=sectheta. This is a triangle where t is the hypotenuse, 1 is the adjacent side, and sqrt(t^2-1) is the opposite side.

Thus csctheta=t/sqrt(t^2-1) and cottheta=1/sqrt(t^2-1).

Plugging these in gives:

=-(36t)/(t^2-1)+36lnabs((t+1)/sqrt(t^2-1))

With t=sqrt(4x+1):

=-(36sqrt(4x+1))/((4x+1)-1)+36lnabs((sqrt(4x+1)+1)/(sqrt((4x+1)-1)))

=-(9sqrt(4x+1))/x+36lnabs((sqrt(4x+1)+1)/(2sqrtx))+C

Which, when graphically confirmed, is the same answer that Truong-Son found.