How do you integrate from -6 to-3 for sqrt((x^2-9))/2?

1 Answer
Apr 12, 2015

Method is this

Substitute x= 3 sec theta
For any variable substitution in the integration, Integrant, Limits and the integration operator need to be changed.

So Integrant is sqrt(9sec^2theta-9)/2 = (3tantheta)/2

The limits are @x=-6 to x=-3 changes as well.

Upper Limit calculation
3sectheta = -3
sec theta = -1
theta = pi

Lower Limit calculation
3sec theta = -6
sec theta = -2
theta = (5pi)/6

Integral operator change
dx = sectheta tantheta d theta
int_-6^-3 sqrt(x^2-9)/2 = int_((5pi)/6)^pi (3secthetatan^2theta d theta)/2
= 3/2int_((5pi)/6)^pi (sec^3theta - sec theta) d theta

Check how to evaluate int sec^3 theta d theta here

=3/2{1/2(sec theta tantheta+ln|sec theta+tantheta|)-ln|sec theta+tantheta|}_((5pi)/6)^pi

=3/4{sec theta tantheta-ln|sec theta+tantheta|}_((5pi)/6)^pi
=-0.0082Calculation by me using Excel