How do you integrate ∫cos3xsinxdx? Calculus Techniques of Integration Integration by Trigonometric Substitution 2 Answers Andrea S. · 256 Jan 23, 2017 ∫cos3xsinxdx=−cos4x4+C Explanation: Note that: −sinxdx=d(cosx) so if you substitute u=cosx you have: ∫cos3xsinxdx=−∫u3du=−u44+C=−cos4x4+C Answer link 256 Jan 23, 2017 Since ddx(cos(x))=−sin(x) then ∫cos3(x)sin(x)dx=−∫cos3(x)dcos(x)=−cos4(x)4+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 5748 views around the world You can reuse this answer Creative Commons License